Dynamic Programming

CS218, Spring 2017

Outline

• Intro
• 0-1 Knapsack
• Longest common subsequence
• Bellman-Ford (single source shortest path)
• Floyd-Warshall (all pairs shortest path)
Two key ingredients

- Two key ingredients for an optimization problem to be suitable for a dynamic programming solution

1. optimal substructure

Each substructure is optimal
(principle of optimality)

2. overlapping sub-problems

Sub-problems are dependent
Three basic components

- The development of a dynamic programming algorithm has three basic components
 - a recurrence relation (for defining the value/cost of an optimal solution)
 - a tabular computation (for computing the value of an optimal solution)
 - a trace-back procedure (for delivering an optimal solution)

0-1 Knapsack
The Knapsack Problem

- A thief robbing a store finds \(n \) items
- The \(i \)th item is worth \(b_i \) and weighs \(w_i \) pounds
- Thief’s knapsack can carry at most \(W \) pounds
- \(b_i, w_i \) and \(W \) are integers
- **Problem**: What items to select to maximize profit?

The 0-1 Knapsack Problem

- Each item must be either taken or left behind (a binary choice of 0 or 1)
- Exhibits *optimal substructure* property (for the same reason as for the fractional)
- 0-1 knapsack problem however *cannot* be solved by a greedy strategy
- Can be solved (less) efficiently by *dynamic programming*
0-1 Knapsack Problem

- Let $x_i=1$ denote item i is in the knapsack,
 $x_i=0$ denote item i is not in the knapsack
- Problem stated formally as follows

$$\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{n} b_i x_i \quad \text{(total profit)} \\
\text{subject to} & \quad \sum_{i=1}^{n} w_i x_i \leq W \quad \text{(weight constraint)}
\end{align*}$$

Define the problem recursively ...

- Consider the first item $i=1$
 1. If it is selected (in the knapsack)

$$\begin{align*}
\text{maximize} & \quad \sum_{i=2}^{n} b_i x_i \quad \text{subject to} \quad \sum_{i=2}^{n} w_i x_i \leq W - w_i
\end{align*}$$

 2. If it is not selected (not in the knapsack)

$$\begin{align*}
\text{maximize} & \quad \sum_{i=2}^{n} b_i x_i \quad \text{subject to} \quad \sum_{i=2}^{n} w_i x_i \leq W
\end{align*}$$

- Compute both cases, select the better one
Recursive Solution

- Let us define $P[i,k]$ as the maximum profit possible using items \{i, i+1, ..., n\} and residual (knapsack) capacity k.

- We can define $P[i,k]$ recursively as follows:

 $$
P[i,k] = \begin{cases}
 b_n & i = n \land w_n > k \\
 P[i+1,k] & i = n \land w_n \leq k \\
 \max\{P[i+1,k], b_i + P[i+1,k-w_i]\} & i < n \land w_i > k \\
 \max\{P[i+1,k], b_i + P[i+1,k-w_i]\} & i < n \land w_i \leq k
 \end{cases}$$
0-1 knapsack (recursive) in Python

```python
def knapsack(items, i, k):
    n = len(items)
    if i == n:
        return b(items[n-1]) if w(items[n-1])<=k else 0
    if w(items[i-1])>k:
        return knapsack(items, i+1, k)
    else:
        return max(knapsack(items, i+1, k),
                   b(items[i-1])+knapsack(items, i+1, k-w(items[i-1])))
```

Remark: \(i < n \)

Recursive Solution

- We can write an algorithm for the recursive solution based on the four cases
- Recursive algorithm will take \(O(2^n) \) time
- Inefficient because \(P[i,k] \) for the same \(i \) and \(k \) will be computed many times
- Example
 - \(n=5, \text{ } W=10, \text{ } w=[2, 2, 6, 5, 4], \text{ } b=[6, 3, 5, 4, 6] \)
Dynamic Programming Solution

- The inefficiency could be overcome by computing each $P[i,k]$ once and storing the result in a table for future use
- The table is filled for $i=n,n-1,\ldots,2,1$ in that order for $1 \leq k \leq W$
- First row (initialization)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>...</th>
<th>w_{n-1}</th>
<th>w_n</th>
<th>w_{n+1}</th>
<th>...</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[n,k]$</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>b_n</td>
<td>b_n</td>
<td>...</td>
<td>b_n</td>
</tr>
</tbody>
</table>

\[w = [2, 2, 6, 5, 4] \quad b = [6, 3, 5, 4, 6] \]
Example

\(n=5, \ W=10, \ w=[2, 2, 6, 5, 4], \ b=[2, 3, 5, 4, 6]\)

\[
P[i,k] = \max\{P[i+1,k], \ b_i+P[i+1,k-w_i]\}\]
Example

\(n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6] \)

\[
\begin{array}{cccccccccc}
\text{i}/\text{k} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
5 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
4 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 6 & 10 & 10 \\
3 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 6 & 10 & 11 \\
2 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 6 & 10 & 11 \\
1 & & & & & & & & & & & \\
\end{array}
\]

\(P[i,k] = \max\{P[i+1,k], \ b_i + P[i+1,k-w_i]\} \)

Example

\(n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6] \)

\[
\begin{array}{cccccccccc}
\text{i}/\text{k} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
5 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
4 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 6 & 10 & 10 \\
3 & 0 & 0 & 0 & 0 & 6 & 6 & 6 & 6 & 6 & 10 & 11 \\
2 & 0 & 0 & 3 & 3 & 6 & 6 & 9 & 9 & 9 & 10 & 11 \\
1 & & & & & & & & & & & \\
\end{array}
\]

\(P[i,k] = \max\{P[i+1,k], \ b_i + P[i+1,k-w_i]\} \)
Example

$n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6]$

<table>
<thead>
<tr>
<th>i/k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

$P[i,k] = \max\{P[i+1,k], b_i + P[i+1,k-w_i]\}$

Example

$n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6]$

$\mathbf{x} = [0, 0, 1, 0, 1] \quad \mathbf{y} = [1, 1, 0, 0, 1]$
0-1 knapsack in Python (dyn prog)

```python
def knapsack(items, w):
    P, n = {}, len(items)
    for j in range(w+1):
        P[n, j] = b(items[n-1]) if w(items[n-1]) <= j else 0
    for i in range(len(items)-1, 0, -1):
        for j in range(w+1):
            if w(items[i-1]) > j:
                P[i, j] = P[i+1, j]
            else:
                P[i, j] = max(P[i+1, j],
                              b(items[i-1]) + P[i+1, j - w(items[i-1])])
    return P
```

Time- and space-complexity

- Time complexity: $O(nW)$
- Technically, this is not a polynomial time algorithm
- These class of algorithms are called *pseudo-polynomial*
- Space complexity: $O(nW)$
Longest common subsequence

Longest Common Subsequence

A sequence $Z = \langle z_1, z_2, \ldots, z_k \rangle$ is a subsequence of a sequence $X = \langle x_1, x_2, \ldots, x_m \rangle$ if Z can be generated by striking out some (or none) elements from X.

For example, $\langle b, c, d, b \rangle$ is a subsequence of $\langle a, b, c, a, d, c, a, b \rangle$.
Longest Common Subsequence

The **longest common subsequence problem** is the problem of finding, for given two sequences \(X = \langle x_1, x_2, \ldots, x_m \rangle\) and \(Y = \langle y_1, y_2, \ldots, y_n \rangle\), a maximum-length common subsequence of \(X\) and \(Y\).

For example, given

\[X = B \ D \ C \ A \ B \ A\]
\[Y = A \ B \ C \ B \ D \ A \ B\]

\(Z = \text{LCS}(X, Y) = \text{BCBA}\)

\[X = \begin{array}{cccccc}
 B & D & C & A & B & A \\
\end{array}\]
\[Y = \begin{array}{cccccc}
 A & B & C & B & D & A & B \\
\end{array}\]
Optimal Substructure

Theorem. Let $Z = <z_1, \ldots, z_k>$ be any LCS of X and Y.
1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y
3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}

Proof: (case 1: $x_m = y_n$)

If $z_k \neq x_m$, we could append $x_m = y_n$ to Z to obtain a CS of X and Y of length $k+1$, which contradicts the optimality of Z. Thus we must have that $z_k = x_m = y_n$.

Let Z_{k-1} be a length-$(k-1)$ common subsequence of X_{m-1} and Y_{n-1}. Z_{k-1} must be an LCS of X_{m-1} and Y_{n-1}. If W is a common subsequence of X_{m-1} and Y_{n-1} longer than $k-1$, appending $x_m = y_n$ to W would make W longer than Z.

Optimal Substructure

Theorem. Let $Z = <z_1, \ldots, z_k>$ be any LCS of X and Y.
1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y
3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}

Proof: (case 2: $x_m \neq y_n$ and $z_k \neq x_m$)

Since Z does not end in x_m, then Z is a common subsequence of X_{m-1} and Y.

Z is a longest common subsequence because if there was a common subsequence W of X_{m-1} and Y with length greater than k, W would also be a common subsequence of X_{m-1} and Y, contradicting the optimality of Z. (case 3 is symmetric to case 2)
Recursive Formulation

- Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$

$$c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0, \\
c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\
\max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j.
\end{cases}$$

- We want $c[m, n]$
- This gives a recursive algorithm and solves the problem
- But is it efficient?

Example

$$c[\alpha, \beta] = \begin{cases}
0 & \text{if } \alpha \text{ empty or } \beta \text{ empty}, \\
c[\text{prefix } \alpha, \text{prefix } \beta] + 1 & \text{if } \text{end}(\alpha) = \text{end}(\beta), \\
\max(c[\text{prefix } \alpha, \beta], c[\alpha, \text{prefix } \beta]) & \text{if } \text{end}(\alpha) \neq \text{end}(\beta).
\end{cases}$$

```
c[springtime, printing]
   c[springtim, printing]  c[springtime, printin]
      [springti, printing] [springtim, printin]  [springti, printin] [springtime, printi]
         [springt, printing] [springti, printin]  [springtim, printi] [springtime, print]
```

34
LCS in Python

```python
def LCS(X,Y):
    c = {}
    for i in range(len(X)+1):
        for j in range(len(Y)+1):
            if i == 0 or j == 0:
                c[i,j] = 0
            elif X[i-1] == Y[j-1]:
                c[i,j] = c[i-1,j-1] + 1
            else:
                c[i,j] = max(c[i-1,j],c[i,j-1])
    #...continues
```

Remark: \(c[i,j]\) contains the length of an LCS of \(X[:i]\) and \(Y[:j]\)

Time: \(O(mn)\)

Reporting the LCS in Python

```python
#...continued
i,j = len(X),len(Y)
LCS = []
while c[i,j]:
    while c[i,j] == c[i-1,j]:
        i -= 1
    while c[i,j] == c[i,j-1]:
        j -= 1
    i -= 1
    j -= 1
    LCS.append(X[i])
LCS.reverse()
return LCS
```

Remark: append matches

Time: \(O(m+n)\)
LCS algorithm

- Time complexity: $O(nm)$
- Space complexity: $O(nm)$
- Space can be reduced to linear by observing that we just need the previous row to compute the current row
- The length of the LCS can be computed easily in linear space, but how to traceback?

LCS in linear space

We calculate the optimal LCS path from $(0,0)$ to (n,m) that crosses through $(i,m/2)$ where i ranges from $[0,n]$.

Define $\text{length}(i)$ as the length of the LCS path from $(0,0)$ to (n,m) that passes through cell $(i, m/2)$, for all choices of i.
LCS in linear space

- \(\text{prefix}(i) = |\text{LCS}(x_{[1\ldots m/2]}, y_{[1\ldots i]})| \)
- \(\text{suffix}(i) = |\text{LCS}(x_{[m/2+1\ldots m]}, y_{[i+1\ldots n]})| = |\text{LCS}(x_{[1\ldots m/2]}^R, y_{[1\ldots n-i]}^R)| \)
- \(\text{length}(i) = \text{prefix}(i) + \text{suffix}(i) \) is the length of the LCS path that passes through cell \((i, m/2)\)

Define \((\text{mid}, m/2)\) as the vertex that contains the optimal LCS path (assume for simplicity there is only one), that is \(\text{mid} = \arg\max_{0 \leq i \leq n} \text{length}(i)\)
Computing Prefix(i)
Compute $\text{prefix}(i)$ from $0 \rightarrow m/2$ where $\text{prefix}(i)$ is the length of the LCS path from $(0,0)$ to $(i,m/2)$

Computing Suffix(i)
Compute $\text{suffix}(i)$ from $m/2 \rightarrow m$ where $\text{suffix}(i)$ is the length of the LCS path from (n,m) to $(i,m/2)$
Finding the middle point

- Find the value mid that maximizes
 \[\{prefix(i) + suffix(i)\} \]
 that is
 \[mid = \arg\max_{0 \leq i \leq n} \{prefix(i) + suffix(i)\} \]
- You now have a middle vertex of the maximum path ($mid, m/2$)
Time = Area: First Pass

- On first pass, the algorithm covers the entire area

 \[\text{Area} = mn \]

Time = Area: Second Pass

- On second pass, the algorithm covers only 1/2 of the area

 \[\text{Area} = mn/2 \]
Time = Area: Third Pass

- On third pass, only $1/4$th is covered

$$\text{Area} = \frac{mn}{4}$$

Time/space complexity

- $nm(1 + \frac{1}{2} + \frac{1}{4} + ...) \leq 2nm$

- Time complexity $O(nm)$

- Space complexity $O(n+m)$
Bellman-Ford

Bellman-Ford Algorithm

- Dijkstra’s algorithm does not work when the weighted graph contains negative edges
 - we cannot be greedy anymore on the assumption that the lengths of paths will not decrease in the future
- Bellman-Ford algorithm detects negative cycles (returns \textit{false}) or returns the shortest path-tree
Bellman-Ford Algorithm

- Use $d[]$ labels (like in Dijkstra and Prim)
- Initialize $d[s]=0$, $d[]=\infty$ otherwise
- Perform $|V|-1$ rounds
- In each round, attempt an edge relation for all the edges in the graph
- An extra round of edge relaxation can tell the presence of a negative cycle

Bellman-Ford Algorithm

Algorithm Bellman-Ford $(G(V,E),s)$

```plaintext
for each vertex $u$ in $V$
    $d[u] \leftarrow \infty$
    $d[s] \leftarrow 0$

for $i \leftarrow 1$ to $|V|-1$ do
    for each edge $(u,v)$ in $E$ do
        if $d[v] > d[u] + w(u,v)$ then
            $d[v] \leftarrow d[u] + w(u,v)$

for each edge $(u,v)$ in $E$ do
    if $d[v] > d[u] + w(u,v)$ then
        return $FALSE$

return $d[], TRUE$
```

56

57
Iteration 0

Iteration 1
Iteration 2

Iteration 3
Bellman-Ford is a dynamic programming algorithm. Subproblems: paths composed by increasing # of edges
Let \(d(i, j) = \) “cost of the shortest path from source \(s \) to vertex \(i \) that uses at most \(j \) edges/hops”

\[
d(i, j) = \begin{cases}
0 & \text{if } i = s, j = 0 \\
\infty & \text{if } i \neq s, j = 0 \\
\min_{(k,i) \in E} \{d(k, j-1) + w(k,i), d(i, j-1)\} & \text{if } j > 0
\end{cases}
\]
All-pair shortest path

All-pairs shortest path

• We want to compute the shortest path distance between every pair of vertices in a directed graph G (n vertices, m edges)

• We want to know $D[i,j]$ for all i,j, where $D[i,j]$ = shortest distance from v_i to v_j
All-pairs shortest path

• If G has no negative-weight edges, we could use Dijkstra repeatedly from each vertex
• Dijkstra runs in $O(m+n \log n)$ time
• It would take $O(n (m+n \log n))$ time, that is $O(n^2 \log n + nm)$ time, which could be as large as $O(n^3)$

All-pairs shortest path

• If G has negative-weight edges (but no negative-weight cycles) we could use Bellman-Ford repeatedly from each vertex
• Bellman-Ford runs in $O(nm)$
• It would take $O(n^2 m)$ time, which could be as large $O(n^4)$ time
All-pairs shortest path

- We now see an algorithm to solve the all-pairs shortest path in $O(n^3)$ time
- The graph can contain negative-weight edges (but no negative-weight cycles)

All-pairs shortest path

- Let $G=(V,E)$ a weighted directed graph
- Let $V=(v_1,v_2,...,v_n)$
- Define cost function $D_{i,j}^k$ = "the shortest distance from v_i to v_j using only vertices $\{v_1,v_2,...,v_k\}$"
A dynamic programming shortest-path

Initially we set

\[D^0_{i,j} = \begin{cases}
0 & \text{if } i = j \\
\infty & \text{otherwise} \\
w((v_i, v_j)) & \text{if } (v_i, v_j) \in E
\end{cases} \]

A dynamic programming shortest-path
A dynamic programming shortest-path

- The cost of going from \(v_i \) to \(v_j \) using vertices \(1, \ldots, k \) is the shorter between
 - (do not use \(v_k \)) The shortest path from \(v_i \) to \(v_j \) using vertices \(1, \ldots, k-1 \)
 - (use \(v_k \)) The shortest path from \(v_i \) to \(v_k \) using \(1, \ldots, k-1 \) plus the cost of the shortest path from \(v_k \) to \(v_j \) using \(1, \ldots, k-1 \)

Then

\[
D_{i,j}^k = \min \{ D_{i,j}^{k-1}, D_{i,k}^{k-1} + D_{k,j}^{k-1} \}.
\]

All-pairs shortest path

Algorithm AllPairs(\(\tilde{G} \)):

Input: A weighted directed graph \(\tilde{G} \) with \(n \) vertices numbered \(v_1, v_2, \ldots, v_n \)

Output: A matrix \(D \) such that \(D[i,j] \) is distance from \(v_i \) to \(v_j \) in \(G \)

for \(i \leftarrow 1 \) to \(n \) do

 for \(j \leftarrow 1 \) to \(n \) do

 if \(i = j \) then

 Set \(D[0][i,j] \leftarrow 0 \) and continue looping

 else

 if \((v_i, v_j)\) is an edge in \(\tilde{G} \) then

 Set \(D[0][i,j] \leftarrow w((v_i, v_j)) \)

 else

 Set \(D[0][i,j] \leftarrow +\infty \)

for \(i \leftarrow 1 \) to \(n \) do

 for \(j \leftarrow 1 \) to \(n \) do

 for \(k \leftarrow 1 \) to \(n \) do

 Set \(D[k][i,j] \leftarrow \min \{ D[k-1][i,j], D[k-1][i,k] + D[k-1][k,j] \} \)

Return \(D^n \)
All-pairs shortest path

• Floyd-Warshall’s algorithm computes the shortest path distance between each pair of vertices of G in $O(n^3)$ time

• FYI: when the graph is sparse consider Johnson’s algorithm, which has complexity $O(n^2 \log n + nm)$ even if there are negative weights

Reading assignment

• Chapter 15, “Dynamic Programming”
• Section 15.4, “Longest common subsequence”
• Section 15.2, “Matrix chain multiplication”
• Section 24.1, “The Bellman-Ford algorithm”
• Section 25.2, “All-pairs shortest path”