Analysis of Algorithms

Outline

- Worst case time-complexity
- Asymptotic notation
- Lower bounds
- Discrete Math & Recurrence Relations
- Amortized Analysis
Various algorithmic “complexities”

• We can “rank” algorithms depending on several factors
 – running time (“time complexity”)
 – memory requirements (“space complexity”)
 – power consumption
 – I/O utilization
 – ease of implementation
 – …
Worst Case Time-Complexity

• **Definition:** The *worst case time-complexity* of an algorithm A is the *asymptotic* running time of A as a *function of the input size*, when the input is the one that makes the algorithm *slower* in the limit

• How do we measure the running time of an algorithm?

Usage of Python

• We will use Python code (when possible) to describe algorithms (sometimes w English)

• Python is
 – High-level (easy to use and learn)
 – Object-oriented
 – Interpreted (but can be compiled)
 – Portable
 – Free/open-source
Python: an example

• Algorithm for finding the maximum element of an array

```python
def iMax(A):
    currentMax = A[0]
    for i in range(1,len(A)):
        if currentMax < A[i]:
            currentMax = A[i]
    return currentMax
```

… more python-ish

• Algorithm for finding the maximum element of an array

```python
def iMax(A):
    currentMax = A[0]
    for x in A[1:]:
        if currentMax < x:
            currentMax = x
    return currentMax
```
Input size and basic operation examples

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input size measure</th>
<th>Basic operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching for key in a list of (n) items</td>
<td>Number of items in the list, i.e., (n)</td>
<td>Key comparison</td>
</tr>
<tr>
<td>Multiplication of two matrices</td>
<td>Matrix dimensions or total number of elements</td>
<td>Multiplication of two numbers</td>
</tr>
<tr>
<td>Checking primality of a given integer (n)</td>
<td>size of (n) = number of digits (in binary representation)</td>
<td>Division</td>
</tr>
<tr>
<td>Typical graph problem</td>
<td>#vertices and/or #edges</td>
<td>Visiting a vertex or traversing an edge</td>
</tr>
</tbody>
</table>

Example (Max iterative)

```python
def iMax(A):
    currentMax = A[0]
    for i in range(1,len(A)):
        if currentMax < A[i]:
            currentMax = A[i]
    return currentMax
```

The program executes \(n-1 \) comparisons (irrespective from the type of input) where \(n=len(A) \) therefore the worst case time-complexity is \(O(n) \)
Example (Max recursive)

```python
def rMax(A):
    if len(A) == 1:
        return A[0]
    return max(rMax(A[1:]), A[0])
```

The program executes \(n-1 \) comparisons (irrespective from the type of input) therefore the worst case time-complexity is \(O(n) \)

Asymptotic notation
The “Big-Oh” Notation

• Definition: Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if and only if there are positive constants c and n_0 such that $f(n) \leq c \cdot g(n)$ for $n \geq n_0$.

Figure 1.3: Illustrating the “big-Oh” notation. The function $f(n)$ is $O(g(n))$, for $f(n) \leq c \cdot g(n)$ when $n \geq n_0$.
Asymptotic Notation

- Special classes of algorithms
 - constant: \(O(1) \)
 - logarithmic: \(O(\log n) \)
 - linear: \(O(n) \)
 - quadratic: \(O(n^2) \)
 - cubic: \(O(n^3) \)
 - polynomial: \(O(n^k), k \geq 0 \)
 - exponential: \(O(a^n), n > 1 \)

Big Omega

- **Definition:** Given two functions \(f(n) \) and \(g(n) \), we say that \(f(n) \) is \(\Omega(g(n)) \) if and only if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)

- **Property:** \(f(n) \) is \(\Omega(g(n)) \) iff \(g(n) \) is \(O(f(n)) \)
Big Theta

- **Definition**: Given two functions \(f(n) \) and \(g(n) \), we say that \(f(n) \) is \(\Theta(g(n)) \) if and only if there are positive constants \(c_1, c_2 \) and \(n_0 \) such that \(c_1 g(n) \leq f(n) \leq c_2 g(n) \) for \(n \geq n_0 \)

- **Property**: \(f(n) \) is \(\Theta(g(n)) \) if and only if “\(f(n) \) is \(O(g(n)) \) AND \(f(n) \) is \(\Omega(g(n)) \)”

Asymptotic Analysis of Running Time

- **Comparing the asymptotic running time**
 - an algorithm that runs in \(O(n) \) time is **better** than one that runs in \(O(n^2) \) time
 - similarly, \(O(\log n) \) is **better** than \(O(n) \)
 - hierarchy of functions: \(\log n < n < n^2 < n^3 < 2^n \)

- **Caution**: Beware of very large constant factors. An algorithm running in time \(1,000,000 \ n \) is still \(O(n) \) but might be less efficient on your data set than one running in time \(2n^2 \), which is \(O(n^2) \)
Time analysis for iterative algorithms

Steps

1. Decide on parameter \(n \) indicating input size
2. Identify algorithm’s basic operation
3. Determine worst case(s) for input of size \(n \)
4. Set up a sum for the number of times the basic operation is executed
5. Simplify the sum using standard formulas and rules
Example of Asymptotic Analysis

```python
def prefixAverages1(X):
    A = []
    for i in range(len(X)):
        a = 0
        for j in range(i+1):
            a += X[j]
            # n iterations
        A.append(a/float(i+1))
    return A
```

...then the algorithm is $O(n^2)$

A faster algorithm

• Observe that

\[
A[i-1] = \frac{X[0] + X[1] + \cdots + X[i-1]}{i} \\
A[i] = \frac{X[0] + X[1] + \cdots + X[i-1] + X[i]}{i+1}.
\]
A linear-time algorithm

```python
def prefixAverages2(X):
    A, a = [], 0
    for i in range(len(X)):
        a = a + X[i]
        A.append(a/float(i+1))
    return A
```

A trickier example

- Analyze the worst-case time complexity of the following algorithm, and give a tight bound using the big-theta notation

```python
def weirdLoop(n):
    i = n
    while i >= 1:
        for j in range(i):
            print 'Hello'
        i = i/2
    return
```
Lower bounds

Lower bounds: intro

• Most of the class will be devoted to solve certain problems as quickly as possible
• By showing faster and faster algorithms for a specific problem, are making statements on how *easy* the problem is
• Sometimes we are interested to show how *hard* some problems are by proving lower bounds on their complexity
Lower bounds: intro

- This is considerably harder than proving upper bounds because it is no longer enough to examine a single algorithm.
- To prove that a problem P cannot be solved faster than $f(n)$ time for an input of size n, we must prove that every algorithm that solves P has a worst-case running time $\Omega(f(n))$.

Decision-tree model of computation

- Many sorting and searching algorithms are comparison-based, i.e., they sort/search by making comparisons between pairs of objects (examples: binary search, bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, …).

- We define the running time of a decision tree algorithm for a given input to be the number of queries in the path from the root to the leaf.
Decision-tree model

- Each internal node is a query (question about the input), edges represent possible answers (constant), each leaf is labeled with a possible output
- Search: suppose we want to determine, given a number x, the position of x in the array A, if any
- The binary search tree is an implicit decision-tree model

Comparison-based search

- Most lower bounds for decision trees are based on the following simple observation: \textit{the answers to the queries must give you enough information to specify any possible output}
- If a problem has N different outputs, then any decision tree must have at least N leaves
- If every query has two possible answers, the height of the decision tree must be at least $\Omega(\log N)$
- In the search problem, there are $n+1$ possible outputs, any decision tree must have at least $n+1$ leaves, and thus any decision tree must have depth at least $\Omega(\log n)$
- This implies that the standard binary search algorithm is optimal (there is no faster algorithm in this model of computation)
Comparison-based sorting

- Let us derive a lower bound on the running time of any algorithm that uses comparisons to sort \(n \) elements \(x_1, x_2, ..., x_n \) (distinct) by counting the number of comparisons
- Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

\[\begin{align*}
&x_i < x_j \quad \text{?} \\
&x_a < x_b \quad \text{?} \\
&x_m < x_o \quad \text{?} \\
&x_p < x_q \quad \text{?} \\
&x_e < x_f \quad \text{?} \\
&x_k < x_l \quad \text{?} \\
&x_c < x_d \quad \text{?}
\end{align*} \]

Decision Tree Height

- The height of this decision tree is a lower bound on the running time
- Every possible input permutation must lead to a separate leaf output
- Since there are \(n! \) leaves, the height is at least \(\log(n!) \)
The Lower Bound

• Any comparison-based sorting algorithms takes at least \(\log(n!) \) time
• Because of the Stirling’s approximation
 \[
 n! \approx n^n e^{-n} \sqrt{2\pi n}
 \]
 \[
 \ln(n!) \approx n \ln n - n
 \]
• Thus, any comparison-based sorting algorithm must run in \(\Omega(n \log n) \) time in the worst case
• Decision-tree describe almost all well-known sorting algorithms where the actual input values don’t matter, only their order
• This lower bound does not apply to numbers in a fixed range (e.g., integers) one can sort faster (counting/bucket/radix sort)

Recurrence Relations
Recurrence relation

- A recurrence relation is an equation that recursively define a sequence: each term of the sequence is defined as a function of the preceding term(s)

For instance

\[f(n) = \begin{cases}
 2 & n=1 \\
 f(n-1) + n & n>1
\end{cases} \]

Recurrence relations: simple form
MergeSort: sorting recursively

- MergeSort is a divide & conquer algorithm
 - Divide: divide an \(n \)-element sequence into two subsequences of approx \(n/2 \) elements
 - Conquer: sort the subsequences recursively
 - Combine: merge the two sorted subsequences to produce the final sorted sequence

```python
def mergesort(A):
    if len(A) < 2:
        return A
    else:
        m = len(A) / 2
        l = mergesort(A[:m])
        r = mergesort(A[m:])
        return merge(l, r)
```
Example

![Merge-sort tree](image)

Figure 4.2: Merge-sort tree T for an execution of the merge-sort algorithm on a sequence with 8 elements: (a) input sequences processed at each node of T; (b) output sequences generated at each node of T.

Merge of MergeSort

```python
def merge(l, r):
    result, i, j = [], 0, 0
    while i < len(l) and j < len(r):
        if l[i] <= r[j]:
            result.append(l[i])
            i += 1
        else:
            result.append(r[j])
            j += 1
    result += l[i:]
    result += r[j:]
    return result
```

44
MergeSort Analysis

- Divide: Just computes the middle of the subsequence, thus takes constant time:
 \[D(n) = \Theta(1) \]
- Conquer: We solve 2 subproblems of size approximately \(n/2 \):
 \[a = 2, \quad b = 2 \]
- Combine: Merge takes \(\Theta(n) \):
 \[C(n) = \Theta(n) \]
- Noting that \(\Theta(n) + \Theta(1) \) is still \(\Theta(n) \), we get:
 \[T(n) = \Theta(1) \quad \text{if} \quad n = 1 \]
 \[2T(n/2) + \Theta(n) \quad \text{if} \quad n > 1 \]
- Later we will see that:
 \[T(n) = \Theta(n \log n) \]

“Visual” Analysis

Figure 4.4: A visual analysis of the running time of merge-sort. Each node of the merge-sort tree is labeled with the size of its subproblem.
Solving recurrence relations: Methods

- Two methods for solving recurrences
 - Iterative substitution method
 - Master method
 - (Recursion Tree)
 - (Guess-and-Test method)

Mergesort recurrence relation

\[
\begin{align*}
T(N) &= 2T\left(\frac{N}{2}\right) + N & \text{for } N \geq 2 \\
T(1) &= 1
\end{align*}
\]
Verify the correctness

• How to verify the solution is correct?

• Use proof by induction!

• Important: make sure the constant c works for both the base case and the induction step

$$T(N) = 2 \left(2T \left(\frac{N}{4} \right) + \frac{N}{2} \right) + N$$

$$= 4T \left(\frac{N}{4} \right) + 2N$$

$$= 4 \left(2T \left(\frac{N}{8} \right) + \frac{N}{4} \right) + 2N$$

$$= 8T \left(\frac{N}{8} \right) + 3N$$

$$\ldots$$

$$= 2^{i}T \left(\frac{N}{2^i} \right) + iN$$

The expansion stops for $i = \log_2 N$, so that

$$T(N) = N + N \log_2 N$$
Proof by induction

\[T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

Fact: \(T(n) \in O(n \log_2 n) \).

Proof. Base case: \(T(2) = 2T(1) + 2 = 4 \leq c(2 \log_2 2) = 2c \).

Hence, \(c \geq 2 \).

Induction hypothesis: \(T(n/2) \leq c \frac{n}{2} \log_2 \frac{n}{2} \)

Induction: \(T(n) = 2T(n/2) + n \)

\[\leq 2c \frac{n}{2} \log_2 \frac{n}{2} + n \]

\[= cn \log_2 \frac{n}{2} + n = cn \log_2 n - cn \log_2 2 + n \]

Choose \(c = 2 \).

The constant \(c \) used in the induction and the base case has to be the same!

Towers of Hanoi
Towers of Hanoi

Goal: transfer all N disks from peg A to peg C

Rules:
- move one disk at a time
- never place larger disk above smaller one

Recursive solution:
- transfer $N-1$ disks from A to B
- move largest disk from A to C
- transfer $N-1$ disks from B to C

Total number of moves:
- $T(N) = 2T(N-1) + 1$

```python
def hanoi(n, a='A', b='B', c='C'):
    if n == 0:
        return
    hanoi(n-1, a, c, b)
    print(a, '->', c)
    hanoi(n-1, b, a, c)
```
Towers of Hanoi: Recurrence Relation

Solve

\[T(N) = \begin{cases}
2T(N - 1) + 1 & N > 1 \\
1 & N = 1
\end{cases} \]

Towers of Hanoi: Unfolding the relation

\[T(N) = 2 \left(2T(N - 2) + 1 \right) + 1 = \]
\[= 4 \left(T(N - 2) + 2 \right) + 1 = \]
\[= 4 \left(2T(N - 3) + 1 \right) + 2 + 1 = \]
\[= 8T(N - 3) + 4 + 2 + 1 = \]
\[\cdots \]
\[= 2^i \left(T(N - i) + 2^{i-1} + 2^{i-2} + \ldots + 2^1 + 2^0 \right) \]

the expansion stops when \(i = N - 1 \)

\[T(N) = 2^{N-1} + 2^{N-2} + 2^{N-3} + \ldots + 2^1 + 2^0 \]

This is a geometric sum, so that we have:

\[T(N) = 2^{N} - 1 \in \Theta(2^N) \]
Problem

Problem: Solve exactly (by iterative substitution)

\[T(n) = \begin{cases}
4 & n = 1 \\
4T(n-1) + 3 & n > 1
\end{cases} \]

Solution: \(T(n) = 4^n + 4^{n-1} - 1 \)
Another example

\[T(N) = 2T(\sqrt{N}) + 1 \]
\[T(2) = 0 \]

\[
\begin{align*}
2T(N^{1/2}) + 1 \\
2(2T(N^{1/4}) + 1) + 1 \\
4T(N^{1/4}) + 1 + 2 \\
8T(N^{1/8}) + 1 + 2 + 4 \\
\ldots
\end{align*}
\]

Another example

\[
2^i T\left(\frac{1}{N^{2^i}}\right) + 2^0 + 2^1 + \ldots + 2^i - 1
\]

The expansion stops for \(\frac{1}{N^{2^i}} = 2 \)

i.e., \(i = \log \log N \)

\[T(N) = 2^0 + 2^1 + \ldots + 2^{\log \log N - 1} = \log N - 1 \]
Master Theorem method

\[T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \geq d, \end{cases} \]

Theorem 5.6 [The Master Theorem]: Let \(f(n) \) and \(T(n) \) be defined as above.

1. If there is a small constant \(\varepsilon > 0 \) such that \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \).
2. If there is a constant \(k \geq 0 \) such that \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \).
3. If there are small constants \(\varepsilon > 0 \) and \(\delta < 1 \) such that \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \) and \(aT(n/b) \leq \delta f(n) \), for \(n \geq d \), then \(T(n) \) is \(\Theta(f(n)) \).

\(n/b \) stands for \(\lceil n/b \rceil \) or \(\lfloor n/b \rfloor \)

Master Theorem

<table>
<thead>
<tr>
<th>Condition on (f(n))</th>
<th>Condition</th>
<th>Conclusion on (T(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(n^{\log_b a - \varepsilon}))</td>
<td>(\varepsilon > 0)</td>
<td>(\Theta(n^{\log_b a}))</td>
</tr>
<tr>
<td>(\Theta(n^{\log_b a \log^k n}))</td>
<td>(k \geq 0)</td>
<td>(\Theta(n^{\log_b a \log^{k+1} n}))</td>
</tr>
<tr>
<td>(\Omega(n^{\log_b a + \varepsilon}))</td>
<td>(\varepsilon > 0, \delta < 1) (af(n/b) \leq \delta f(n))</td>
<td>(\Theta(f(n)))</td>
</tr>
</tbody>
</table>
Master method (first case)

Example 5.7: Consider the recurrence

\[T(n) = 4T(n/2) + n. \]

In this case, \(n^{\log_2 a} = n^{\log_2 4} = n^2 \). Thus, we are in Case 1, for \(f(n) \) is \(O(n^{2-\varepsilon}) \) for \(\varepsilon = 1 \). This means that \(T(n) \) is \(\Theta(n^2) \) by the master method.

Master method: Hanoi (first case w substitution)

- Hanoi has for any \(n > 0 \) a running time of
 \[T(n) = 2T(n-1) + 1. \]

 In order to bring this into a form such that the Master Theorem is applicable, we rename \(n = \lg m \):
 \[
 T(\lg m) = 2T(\lg m - 1) + 1 \\
 = 2T(\lg m - \lg 2) + 1 \\
 = 2T(\lg (m/2)) + 1
 \]

 Defining \(S(m) = T(\lg m) \) we get the new recurrence:
 \(S(m) = 2S(m/2) + 1 \)

 Hence \(a = 2, b = 2, f(m) = 1 \). Since \(1 = m^{\log_2 2} \) the first case applies with \(\varepsilon = 1 \) and we get:
 \(S(m) = \Theta(m) \)

 With \(S(m) = T(\lg m) \) and \(n = \lg m \) we finally get:
 \(T(n) = \Theta(2^n) \)
Master method (second case)

Example 5.8: Consider the recurrence

\[T(n) = 2T(n/2) + n \log n. \]

which is one of the recurrences given above. In this case, \(n^{\log_2 1} = n^{\log_2 2} = n \).
Thus, we are in Case 2, with \(k = 1 \), for \(f(n) \) is \(\Theta(n \log n) \). This means that \(T(n) \) is \(\Theta(n \log^2 n) \) by the master method.

Master method: binary search (second case)

- The Master Theorem allows us to ignore the floor or ceiling function around \(n/b \) in \(T(n/b) \) in general.
- Binary Search has for any \(n > 0 \) a running time of

\[T(n) = T(n/2) + \Theta(1). \]

Hence \(a = 1, b = 2, f(n) = \Theta(1) \). Since \(1 = n^{\log_2 1} \) the second case applies and we get:

\[T(n) = \Theta(\log n) \]
Master method: merge-sort (second case)

- For arbitrary $n > 0$, the running time of Merge-Sort is
 \[
 T(n) = \begin{cases}
 O(1) & \text{if } n = 1 \\
 T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1
 \end{cases}
 \]

 We can approximate this from below and above by
 \[
 T(n) = \begin{cases}
 2T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 \\
 2T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1
 \end{cases}
 \]

 respectively. According to the Master Theorem, both have the same solution which we get by taking
 \[a = 2, \ b = 2, \ f(n) = \Theta(n)\,.
 \]

 Since $n = n^{\log_2 2}$, the second case applies and we get:
 \[T(n) = \Theta(n \log n)\]

Master method (second case w substitution)

Example 5.11: Finally, consider the recurrence

\[T(n) = 2T(n^{1/2}) + \log n. \]

This equation is unfortunately not in a form that allows us to use the master method. We can put it into such a form, however, by introducing the variable $k = \log n$, which lets us write

\[T(n) = T(2^k) = 2T(2^{k/2}) + k. \]

Substituting into this the equation $S(k) = T(2^k)$, we get that

\[S(k) = 2S(k/2) + k. \]

Now, this recurrence equation allows us to use master method, which specifies that $S(k)$ is $O(k \log k)$. Substituting back for $T(n)$ implies $T(n)$ is $O(\log n \log \log n)$.
Master method (third case)

Example 5.9: Consider the recurrence
\[T(n) = T(n/3) + n, \]
which is the recurrence for a geometrically decreasing summation that starts with \(n \).
In this case, \(n^{\log_3 a} = n^{\log_3 1} = n^0 = 1 \). Thus, we are in Case 3, for \(f(n) \) is \(\Omega(n^{0+\varepsilon}) \),
for \(\varepsilon = 1 \), and \(a f(n/b) = n/3 = (1/3)f(n) \). This means that \(T(n) \) is \(\Theta(n) \) by
the master method.

Example 5.10: Consider the recurrence
\[T(n) = 9T(n/3) + n^{2.5}. \]
In this case, \(n^{\log_3 a} = n^{\log_3 9} = n^2 \). Thus, we are in Case 3, for \(f(n) \) is \(\Omega(n^{2+\varepsilon}) \), for
\(\varepsilon = 1/2 \), and \(a f(n/b) = 9(n/3)^{2.5} = (1/3)^{1/2} f(n) \). This means that \(T(n) \) is \(\Theta(n^{2.5}) \)
by the master method.

Amortized analysis
Amortized Analysis

• In *amortized analysis* we care for the temporal cost of one operation when considered *in an aggregate sequence of n operations*

• In a sequence of *n* operations, some operations may be cheap, some may be expensive

• The *amortized cost* of an operation equals the *total* cost of the *n* operations divided by *n*

Amortized Analysis

• The goal is to find an upper bound for the total time complexity *T(n)* required for a sequence of *n* operations

• Formally: if your algorithm takes a total *T(n)* time/work for *n* operations, then the *amortized cost* of each operation is *T(n)/n*
Amortized Analysis: Outline

- We will prove amortized run times using the *accounting method*.
- We present how the accounting works with two examples:
 - Stack example
 - Binary counter example
- Other amortized techniques:
 - Aggregate analysis
 - Potential method

Amortized Analysis: Stack Example

Consider a stack S that holds up to n elements and it has the following three operations:

- $\text{PUSH}(S, x)$... pushes object x in stack S
- $\text{POP}(S)$... pops top of stack S
- $\text{MULTIPOP}(S, k)$... pops the k top elements of S or pops the entire stack if it has less than k elements
Amortized Analysis: Stack Example

• How much a sequence of n \texttt{PUSH()}, \texttt{POP()} and \texttt{MULTIPOP()} operations cost?
 – A \texttt{MULTIPOP()} may take $O(n)$ time in the worst-case
 – \textit{Naïve} analysis: a sequence of n such operations may take $O(n \times n) = O(n^2)$ time since we may call n \texttt{MULTIPOP()} operations of $O(n)$ time each

• With \textit{accounting method} (amortized analysis) we can show a better run time of $O(1)$ per operation

Amortized Analysis: Stack Example

• Devise a charging scheme that \textit{accounts} for the time of a basic operation (in this case, either push or pop of one element)

• Proposed charging scheme
 – Charge $\$2$ for operation \texttt{PUSH()}
 • $\$1$ pays for the cost of pushing an element
 • $\$1$ is deposited on the element to pay when/if POP-ed later by either \texttt{POP()} or \texttt{MULTIPOP()}
 – Charge $\$0$ for \texttt{POP()} and a \texttt{MULTIPOP()}

75

76
Amortized Analysis: Stack Example

\[\text{credit invariant} \]

\[\begin{array}{c}
\text{Push (a)} = 2 \\
\text{Push (b)} = 2 \\
\text{Push (c)} = 2 \\
\end{array} \]

- 1 pays for push and 1 is deposited
- 1 pays for push and 1 is deposited
- 1 pays for push and 1 is deposited

\[\begin{array}{c}
\text{MULTIPOP () costs nothing} \\
because you have the 1 bills to pay for the pop operations!
\end{array} \]

Accounting Method

- We operate with a budget \(T(n) \)
 - A sequence of \(n \) \texttt{POP()}, \texttt{MULTIPOP()}, and \texttt{PUSH()} operations needs a budget \(T(n) \) of at most $2n$
 - Each operation costs

\[T(n)/n = 2n/n = O(1) \text{ amortized time} \]
Binary Counter Example

• Let A be a n-bit counter $A[n-1]...A[0]$ (counts from 0 to 2^n-1)
 – How much time does it take to increment the counter n times starting from zero?
 – We want to measure the number $T(n)$ of bits we need to flip ($0 \to 1$ and $1 \to 0$) as we increment the n-bit counter (time complexity)

```python
def increment(A):
    i=0
    while i<len(A) and A[i]==1:
        A[i]=0
        i+=1
    if i<len(A):
        A[i]=1
    return A
```

This procedure resets the first i-th sequence of 1 bits and sets $A[i]$ equal to 1 (ex. $0011 \to 0100$, $0101 \to 0110$, $1111 \to 0000$)
4-bit Binary Counter Example

<table>
<thead>
<tr>
<th>Counter value</th>
<th>COUNTER</th>
<th>Bits flipped (work $T(n)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>15</td>
</tr>
</tbody>
</table>

Highlighted are bits that flip at each increment

Binary Counter Example

- A naïve analysis would show that a sequence of n operations on a n-bit counter needs $O(n^2)$ work
 - Each `INCREMENT()` takes up to $O(n)$ time $\rightarrow n$ `INCREMENT()` operations can take $O(n^2)$ time

- Amortized analysis with accounting method
 - We show that amortized cost per `INCREMENT()` is only $O(1)$ and the total work $O(n)$
 - Aggregate analysis: Prove that $T(n)$ is never twice the amount of counter value (total # of increments)
Binary Counter Example

- Charge $0 for $A[i]=0$
- Charge 2 for $A[i]=1$
 - 1 pays for the 0→1 flip in $A[i]=1$
 - 1 is deposited to pay for the 1→0 flip later in $A[i]=0$
- Therefore, a sequence of n INCREASES () needs
 \[T(n) = 2n \]
 …each INCREMENT () has an amortized cost of
 \[\frac{2n}{n} = O(1) \]
Reading assignment

• Chapter 3, “Growth of Functions”
• Section 8.1, “Lower bounds for sorting”
• Chapter 4, “Recurrences”
• Chapter 17, “Amortized Analysis”