Instructor

- Stefano Lonardi
 - Office: WCH 325
 - Phone: (951)827-2203
 - Email: stelo@cs.ucr.edu
- Office hours: Tuesday 3:40-5pm
 WCH 325
 (or by appointment)
Grader (1/2)

• Ryan Holt
• Email: rholt002@ucr.edu

• Office hours: TBA
 WCH 110
 (or by appointment)

Grader (2/2)

• TBA
• Email: TBA@ucr.edu

• Office hours: TBA
 WCH 110
 (or by appointment)
Web

- Course homepage
 - http://www.cs.ucr.edu/~stelo/cs218spring17/
 - Schedule, slides, homework, exams (no grades)

- iLearn
 - http://www.ilearn.ucr.edu/
 - Only grades

Textbook

Cormen, Leiserson, Rivest, Stein,
Introduction to Algorithms,
MIT Press (“white book”), 2009
Reference (1/2)

Reference (2/2)

Course Format

• Eight homework, typed, posted on Thursdays, due a week later on Thursdays (hard copy) at the beginning of the class; no collaboration is allowed on homework: copying the solution from any source on-line/off-line is considered cheating.

• Exams (closed book, closed notes)
 – Entrance exam (Apr 11, one week from today, in class)
 – Midterm exam (May 18, in class)
 – Final exam (June 15, 8-11am, in class)

Grading

• Entrance exam \((e)\) – 5%

• Homework \((h)\) – 16% (2% each)

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 – 90</td>
<td>A+</td>
</tr>
<tr>
<td>85 – 89.999</td>
<td>A</td>
</tr>
<tr>
<td>80 – 84.999</td>
<td>A-</td>
</tr>
<tr>
<td>75 – 79.999</td>
<td>B+</td>
</tr>
<tr>
<td>70 – 74.999</td>
<td>B</td>
</tr>
<tr>
<td>65 – 69.999</td>
<td>B-</td>
</tr>
<tr>
<td>60 – 64.999</td>
<td>C</td>
</tr>
<tr>
<td>0 – 59.999</td>
<td>D/F</td>
</tr>
</tbody>
</table>

• Midterm exam \((m)\) – 30%

• Final exam \((f)\) – 49%
Tentative list of topics (1/2)

- Analysis of algorithms: worst-case time complexity, asymptotic notation, lower bounds, recurrence relations, amortized analysis
- Divide and conquer: linear time selection (randomized and deterministic), matrix multiplication (Strassen), fast Fourier transform, polynomial multiplication, integer multiplication (Karatsuba and FFT)
- Greedy: activity selection, single-source shortest path (Dijkstra), minimum spanning tree (Kruskal, Prim), Union-find

Tentative list of topics (2/2)

- Midterm
- Dynamic programming: 0-1 knapsack, longest common subsequence, single-source shortest path (Bellman-Ford), all-pairs shortest path (Floyd-Warshall)
- Flow & matching: flow networks, max flow (Ford-Fulkerson, Edmons-Karp), maximum bipartite matching
- Final
Prerequisites by topic (CS 141-equiv)

- Discrete Math: asymptotic notation, basic summation formulas, sets (operations on sets, relations, functions), counting (permutations, sets, combinations)
- Basic Data Structures: array, list, queue, stack, binary search trees, balanced search trees, heap
- Sorting and Searching: quicksort, mergesort, heapsort, radixsort, binary search
- Graph algorithms: DFS, BFS, connected components, biconnected components
- Digraph algorithms: DFS, BFS, strongly connected components, transitive closure, topological sorting

Entrance exam

- TBA – in class
- 35-40 minutes (closed book, closed notes)
- Three problems
 1. Decide on ten T/F questions
 2. Write four definitions
 3. Design one simple algorithm
Entrance exam: Examples of Qs

• T/F questions
 - \(\frac{6n \log n}{\sqrt{n}} \in \Omega(\sqrt{n})\)
 - BFS can be sometimes slower than \(O(n+m)\), where \(n\) is the number of nodes and \(m\) is the number of edges
 - Topological sorting runs in \(O(n+m)\) time, where \(n\) is the number of nodes and \(m\) is the number of edges
 - The transitive closure of a strongly connected directed graph is a complete directed graph

• Definitions (write a formal definition)
 - Worst-case time complexity
 - \(f(n) \text{ is } \Theta(g(n))\)
 - Strongly connected component of a directed graph