Problem 1. [Greedy/Union-Find]

Use Dijkstra’s algorithm to compute the cost of the shortest (i.e., minimum weight) path from vertex a to the other vertices. Indicate the D value and the vertices in the cloud C after each iteration of the main loop in the table below.

Answer:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td>0</td>
<td>+∞</td>
<td>+∞</td>
<td>+∞</td>
<td>+∞</td>
<td>+∞</td>
<td>+∞</td>
<td>+∞</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{a, h, b, g, c, d, f, e}</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Problem 2. [Greedy/Union-Find]

Prove the following statement. Let \(G = (V, E) \) be a weighted undirected graph. If all the edge weights in \(G \) are distinct, the minimum spanning tree is unique.

Answer: Suppose for contradiction that there are two distinct spanning trees \(T \) and \(T' \) for \(G \), which means that differ by at least one edge. Among those edges that are in only one of the two trees, let \(e \) be one of minimum cost. Assume without loss of generality that \(e \in T \) (the other case, \(e \in T' \), is symmetric). Adding \(e \) to \(T' \) creates a simple cycle \(C \). Since \(T \) is acyclic, \(C \) must have an edge \(e' \) that is not in \(T \). Since \(e' \) is in \(T - T' \), by the choice of \(e \), the weight of \(e \) is at most the weight of \(e' \). Since \(e' \) and \(e \) must have different weights, the weight of \(e \) is strictly less than the weight of \(e' \). Let \(T'' = T' \cup \{e\} - \{e'\} \). Then \(T'' \) is a spanning tree of weight less than the weight of \(T' \), which contradicts the assumption that \(T' \) is a minimum spanning tree.

Problem 3. [Dynamic Programming]

Give the pseudocode for the algorithm we explained in class that computes the longest common subsequence (LCS) between two strings \(x \) and \(y \) using linear space. You can assume that the routine \textsc{LenLCS}(x, y) that returns the length of the LCS between string \(x \) and \(y \) in linear space is available. For simplicity, you can assume the length of one of two strings to be a power of two.

Answer:
Algorithm \textsc{LinearLCS}(x, y : string)
1 \hspace{0.5em} n, m \leftarrow |x|, |y|
2 \hspace{0.5em} \textbf{if} n = 1 \textbf{then return} x[1]
3 \hspace{0.5em} \text{pre} \leftarrow \text{LenLCS}(x[1 : n/2], y)
4 \hspace{0.5em} \text{suf} \leftarrow \text{LenLCS}(x^R[1 : n/2], y^R)
5 \hspace{0.5em} \text{len} \leftarrow \text{pre} + \text{suf}
6 \hspace{0.5em} \text{mid} \leftarrow \arg\max_{1 \leq i \leq m} \text{len}[i]
7 \hspace{0.5em} \textbf{return} \text{LinearLCS}(x[1 : n/2], y[1 : \text{mid}]), (x[n/2], y[\text{mid}]), \text{LinearLCS}(x[n/2 + 1 : n], y[\text{mid} + 1 : m])

Problem 4. [Dynamic Programming]

Given an array \(A = \{a_1, a_2, \ldots, a_n\} \) of integers, we say that a subsequence \(\{a_{i_1}, a_{i_2}, \ldots, a_{i_k}\} \) is (monotonically) increasing if for every \(i_s < i_t \), we have \(a_{i_s} < a_{i_t} \). Given an array \(A \) of size \(n \), we want to compute the length of the longest increasing subsequence (LIS) in \(A \). For instance, if \(A = \{9, 5, 2, 8, 7, 3, 1, 6, 4\} \) the length of the LIS is 3, because \((2, 3, 4) \) (or \((2, 3, 6) \)) are LIS of \(A \). Give a \(O(n^2) \) dynamic programming algorithm for this problem. Analyze the time- and space-complexity of your solution.

Answer: Define \(L(i) \) be the length of the LIS for a prefix \(\{a_1, \ldots, a_i\} \) of \(A \) such that \(a_i \) is the last element in LIS; then \(L(i) \) can be recursively written as:

\[
L(i) = \begin{cases}
1 & \text{if } i = 1 \\
1 + \max_{1 \leq j < i} \{L(j) : a_j < a_i\} & \text{otherwise}
\end{cases}
\]

where we assume that the max of an empty set would return zero.

Time complexity is \(O(n^2) \) because it takes linear time to fill each entry of the array (it is possible to decrease the total complexity to \(O(n \log n) \), but it is a little more complicated). Space complexity is \(O(n) \).