Problem 1. (30 points)

Using the Master method, give an asymptotic tight bound for \(T(n) \) defined by the following recurrence relation

\[
T(n) = \begin{cases}
2 & n = 2 \\
4T(\sqrt{n}) + \log^2 n & n > 2
\end{cases}
\]

Answer: Let \(n = 2^k \) (that is, \(\log_2 n = k \)). Then

\[
T(n) = 4T\left(n^{1/2}\right) + \log^2 n \\
T(2^k) = 4T\left(2^{k/2}\right) + k^2
\]

Let \(S(k) = T(2^k) \). We have

\[
S(k) = \begin{cases}
2 & k = 1 \\
4S(k/2) + k^2 & k > 1
\end{cases}
\]

We can apply case 2 of the Master Theorem. In fact,

\[
k^2 \in \Theta\left(k^{\log_2 4} \log^t k\right)
\]

for \(t = 0 \). Therefore \(S(k) \in \Theta(k^2 \log k) \).

Hence, \(T(2^k) \in \Theta(k^2 \log k) \), which implies that \(T(n) \in \Theta\left(\log^2 n \log \log n\right) \).

Problem 2. (30 points)

We have seen in class that the procedure MERGE in the Mergesort algorithm takes two sorted arrays of size \(n \) and produces one fully sorted array of size \(2n \) in \(O(n) \) time. Use the decision tree method to prove a \(2n - o(n) \) lower bound\(^1\) for the problem of merging two sorted arrays, each containing \(n \) items.

Answer:

Note that when we pick \(n \) elements for first sorted list, this determined a single, unique second list for the other \(n \) elements. Therefore the number of possible ways to divide \(2n \) numbers into two sorted lists is the same as the number of ways to select \(n \) elements of out \(2n \), which is \(\binom{2n}{n} \). We have

\[
\binom{2n}{n} = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{(n!)^2} = \ldots = \frac{2^{2n}}{\sqrt{\pi n}}(1 + O(1/n))
\]

\(^1\)The little-o notation is used here to denote an upper bound that is not asymptotically tight. Formally, we say that \(f(n) \in o(g(n)) \) if for any positive constant \(c \) we can find a constant \(n_0 \) such that \(o \leq f(n) < cg(n) \) for all \(n \geq n_0 \).
by using Stirling’s approximation for the numerator and the denominator. The height of the decision tree is therefore

\[
\log_2 \left(\frac{2^{2n}}{\sqrt{\pi n}} \left(1 + O(1/n)\right) \right) = \log_2 2^{2n} - \log_2 \sqrt{\pi n} + \log_2 (1 + O(1/n)) = 2n - o(n)
\]

Problem 3. (40 points)

Show how to implement a queue using two stacks \(S_1\) and \(S_2\) so that the amortized cost of each operation on the queue is \(O(1)\). (1) Give the pseudocode for the \texttt{Enqueue}(x) operation and the \texttt{Dequeue}() operation (you can omit error checking for underflow and overflow of the stacks). (2) Use the accounting method to charge each operation a constant amortized cost and prove that a sequence of \(n\) \texttt{Enqueue} and \texttt{Dequeue} cost \(O(n)\) time overall.

Answer: We can implement a queue in the following way.

\texttt{Enqueue}(x)
1. \texttt{Push}(S_1, x)

\texttt{Dequeue}()
1. \texttt{if} \(S_2 \neq \emptyset\)
2. \texttt{then return Pop}(S_2)
3. \texttt{else}
4. \texttt{while} \(S_1 \neq \emptyset\) \texttt{do}
5. \texttt{Push}(S_2, \texttt{Pop}(S_1))
6. \texttt{return Pop}(S_2)

Note that each element is first pushed in \(S_1\), then is moved to \(S_2\), and eventually gets popped. Since each \texttt{Pop} and \texttt{Push} in the stacks costs constant time, we count the overall number of \texttt{Pop} and \texttt{Push}.

The following is our charging scheme. We charge \$4 for \texttt{Enqueue} and \$0 for \texttt{Dequeue}. Out of \$4, \$1 pays for the \texttt{Push} in \texttt{Enqueue}(x) and \$3 are left as credit. When \(x\) is popped from \(S_1\) and pushed in \(S_2\) we remove \$2 from the credit. When \(x\) is finally popped from \(S_2\) we use the remaining \$1 to pay for the \texttt{Pop}.

A series of \(n\) \texttt{Enqueue} and \texttt{Dequeue} operations would take \$4n in the worst case (\(O(n)\) overall) and therefore the amortized cost of each operation is \(O(1)\).