Name (first last) ..
Student ID ..

• This quiz is **closed book, closed notes** and 35 minutes long
• Read the questions carefully
• No electronic equipment allowed (cell phones, tablets, computers, ...)
• Write legibly. What can’t be read will not be graded
• Use pseudocode (or English) to describe your algorithms
• Always remember to analyze the time complexity of your solution
• If you have a question about the meaning of a question, raise your hand

1 \[\square \] /40
2 \[\square \] /24
3 \[\square \] /36
Total \[\square \] /100
Problem 1. (40 points: 4 points if correct, 2 if unanswered, 0 if wrong)
Mark by true or false each of the following (no need to prove).

\[\sqrt{n \log_2 n^3} + n \log_2 n \in O(n \log_2 n) \] \[\Box \text{True} \quad \Box \text{False} \]

\[9^{\log_3 n} \in \Omega(n^2 \log n) \] \[\Box \text{True} \quad \Box \text{False} \]

\[\log_2 2^{n^2} - n \in \Theta(n \log_3 3^n) \] \[\Box \text{True} \quad \Box \text{False} \]

An array sorted in increasing order is always a min-heap \[\Box \text{True} \quad \Box \text{False} \]

A min-heap is always a sorted array (in increasing order) \[\Box \text{True} \quad \Box \text{False} \]

The following questions are on graphs; assume that \(n = |V| \) is the number of vertices, and \(m = |E| \) is the number of edges; DFS is “depth first search”; BFS is “breadth first search”; in DFS/BFS the set of edges visited during the execution of these algorithms are called tree or discovery edges; non-tree edges are the others (also called back edges in DFS, cross edges in BFS)

A directed complete graph with \(n \) nodes has exactly \(n(n - 1)/2 \) edges \[\Box \text{True} \quad \Box \text{False} \]

Given the spanning tree \(T \) formed by the discovery (tree) edges of a BFS traversal of a connected undirected graph \(G \) started from node \(s \), for each vertex \(v \), the path on tree \(T \) is the shortest path between \(s \) and \(v \) \[\Box \text{True} \quad \Box \text{False} \]

An edge \(e \) whose removal disconnects the graph is called a bridge; if BFS is run on a connected undirected graph \(G \), it is a possible for a bridge in \(G \) to be a cross (non-tree) edge \[\Box \text{True} \quad \Box \text{False} \]

For a connected undirected graph \(G \), the absence of back (non-tree) edges with respect to a DFS tree implies that \(G \) is acyclic \[\Box \text{True} \quad \Box \text{False} \]

If one runs a DFS on a connected undirected graph, the number of back (non-tree) edges is exactly \(m - n + 1 \) \[\Box \text{True} \quad \Box \text{False} \]
Problem 2. (24 points: 6 points each)

For each of the concepts listed below write a precise (possibly formal) definition. Do not explain or comment about the corresponding algorithm, if any.

1. The topological ordering of a directed acyclic graph $G = (V, E)$ is an ordering of its vertices, say $\{v_1, v_2, \ldots \}$, such that for every directed edge $(v_i, v_j) \in E$, we have that $i < j$.

2. A directed cycle in a directed graph $G = (V, E)$ is a set of directed edges
 \[\{(u_1, u_2), (u_2, u_3), \ldots, (u_{l-2}, u_{l-1}), (u_{l-1}, u_l)\}\text{ where } u_l = u_1\]

3. A spanning tree of an undirected graph $G = (V, E)$ is any acyclic subgraph of G, i.e., $T = (V, E')$ such that $E' \subseteq E$ and T acyclic.

4. A transitive closure of a directed graph $G = (V, E)$ is a graph $G = (V, E')$ where $(u, v) \in E'$ if there is a directed path from u to v in G.
Problem 3. (36 points)

Suppose you are given an array $A = \{a_1, a_2, \ldots, a_n\}$ of n distinct integers. You are told that the sequence of values a_1, a_2, \ldots, a_n is unimodal, that is for some index $p \in [1, n]$, the values in the array increase up to position p in A, and then decrease the remainder of the way until position n. Give an algorithm to find the position p in $O(\log n)$ time. You can assume n to be a power of 2.

Answer: The algorithm works like a binary search. Compare the elements $A[n/2], A[n/2-1]$ and $A[n/2+1]$ to decide whether to search on the left, on the right, or whether we are done. More specifically

- if $A[n/2−1] < A[n/2] < A[n/2+1]$, then search recursively in the entries $A[n/2+1 \ldots n]$

The algorithm has the same structure of binary search, its recurrence relation is $T(n) = T(n/2) + O(1)$, which has solution $O(\log n)$.