This quiz is **closed book, closed notes** and 35 minutes long

- Read the questions carefully
- No electronic equipment allowed (cell phones, tablets, computers, ...)
- Write legibly. What can’t be read will not be graded
- Use pseudocode (or English) to describe your algorithms
- Always remember to analyze the time complexity of your solution
- If you have a question about the meaning of a question, raise your hand

<table>
<thead>
<tr>
<th></th>
<th>/40</th>
<th>/24</th>
<th>/36</th>
<th>/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 1. (40 points: 4 points if correct, 2 if unanswered, 0 if wrong)
Mark by true or false each of the following (no need to prove).

\[\sqrt{n \log_2 n^3} + n \log_2 n \in O(n \log_2 n) \]
\[9^{\log_2 n} \in \Omega(n^2 \log n) \]
\[\log_2 2^{n^2} - n \in \Theta(n \log_3 3^n) \]
An array sorted in increasing order is always a min-heap
A min-heap is always a sorted array (in increasing order)

The following questions are on graphs; assume that \(n = |V| \) is the number of vertices, and \(m = |E| \) is the number of edges; DFS is “depth first search”; BFS is “breadth first search”; in DFS/BFS the the set of edges visited during the execution of these algorithms are called tree or discovery edges; non-tree edges are the others (also called back edges in DFS, cross edges in BFS)

A directed complete graph with \(n \) nodes has exactly \(n(n - 1)/2 \) edges
Given the spanning tree \(T \) formed by the discovery (tree) edges of a BFS traversal of a connected undirected graph \(G \) started from node \(s \), for each vertex \(v \), the path on tree \(T \) is the shortest path between \(s \) and \(v \)
An edge \(e \) whose removal disconnects the graph is called a bridge; if BFS is run on a connected undirected graph \(G \), it is a possible for a bridge in \(G \) to be a cross (non-tree) edge
For a connected undirected graph \(G \), the absence of back (non-tree) edges with respect to a DFS tree implies that \(G \) is acyclic
If one runs a DFS on a connected undirected graph, the number of back (non-tree) edges is exactly \(m - n + 1 \)
Problem 2. (24 points: 6 points each)
For each of the concepts listed below write a precise (possibly formal) definition. Do not explain or comment about the corresponding algorithm, if any.

1. topological ordering of a directed acyclic graph $G = (V, E)$

2. directed cycle in a directed graph $G = (V, E)$

3. spanning tree of an undirected graph $G = (V, E)$

4. transitive closure of a directed graph $G = (V, E)$
Problem 3. (36 points)

Suppose you are given an array $A = \{a_1, a_2, \ldots, a_n\}$ of n distinct integers. You are told that the sequence of values a_1, a_2, \ldots, a_n is unimodal, that is for some index $p \in [1, n]$, the values in the array increase up to position p in A, and then decrease the remainder of the way until position n. Give an algorithm to find the position p in $O(\log n)$ time. You can assume n to be a power of 2.