Dynamic Programming

Outline

• Intro
• 0-1 Knapsack
• Longest common subsequence
• Bellman-Ford (single source shortest path)
• Floyd-Warshall (all pairs shortest path)
Two key ingredients

- Two key ingredients for an optimization problem to be suitable for a dynamic programming solution

1. optimal substructure
 - Each substructure is optimal (principle of optimality)

2. overlapping sub-problems
 - Sub-problems are dependent
Three basic components

- The development of a dynamic programming algorithm has three basic components
 - a recurrence relation (for defining the value/cost of an optimal solution)
 - a tabular computation (for computing the value of an optimal solution)
 - a trace-back procedure (for delivering an optimal solution)

0-1 Knapsack
The Knapsack Problem

- A thief robbing a store finds n items
- The i^{th} item is worth b_i and weighs w_i pounds
- Thief’s knapsack can carry at most W pounds
- b_i, w_i and W are integers
- Problem: What items to select to maximize profit?

The 0-1 Knapsack Problem

- Each item must be either taken or left behind (a binary choice of 0 or 1)
- Exhibits *optimal substructure* property (for the same reason as for the fractional)
- 0-1 knapsack problem however *cannot* be solved by a greedy strategy
- Can be solved (less) efficiently by *dynamic programming*
0-1 Knapsack Problem

- Let \(x_i = 1 \) denote item \(i \) is in the knapsack, \(x_i = 0 \) denote item \(i \) is not in the knapsack
- Problem stated formally as follows

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{n} b_i x_i \quad \text{(total profit)} \\
\text{subject to} & \quad \sum_{i=1}^{n} w_i x_i \leq W \quad \text{(weight constraint)}
\end{align*}
\]

Define the problem recursively ...

- Consider the first item \(i = 1 \)
 1. If it is selected (in the knapsack)

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=2}^{n} b_i x_i \quad \text{subject to} \quad \sum_{i=2}^{n} w_i x_i \leq W - w_1
\end{align*}
\]

 2. If it is not selected (not in the knapsack)

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=2}^{n} b_i x_i \quad \text{subject to} \quad \sum_{i=2}^{n} w_i x_i \leq W
\end{align*}
\]

- Compute both cases, select the better one
Recursive Solution

- Let us define $P[i,k]$ as the maximum profit possible using items $\{i, i+1, \ldots, n\}$ and residual (knapsack) capacity k
- We can define $P[i,k]$ recursively as follows

$$P[i,k] = \begin{cases}
 0 & i = n \land w_n > k \\
 b_n & i = n \land w_n \leq k \\
 P[i+1,k] & i < n \land w_i > k \\
 \max \{P[i+1,k], \ b_i + P[i+1,k-w_i]\} & i < n \land w_i \leq k
\end{cases}$$
0-1 knapsack (recursive) in Python

def knapsack(items, i, k):
 n = len(items)
 if i == n:
 return b(items[n-1]) if w(items[n-1]) <= k else 0
 if w(items[i-1]) > k:
 return knapsack(items, i+1, k)
 else:
 return max(knapsack(items, i+1, k),
 b(items[i-1]) + knapsack(items, i+1, k-w(items[i-1])))

Recursive Solution

- We can write an algorithm for the recursive solution based on the four cases
- Recursive algorithm will take $O(2^n)$ time
- Inefficient because $P[i,k]$ for the same i and k will be computed many times
- Example
 - $n=5$, $W=10$, $w=[2, 2, 6, 5, 4]$, $b=[6, 3, 5, 4, 6]$
Dynamic Programming Solution

- The inefficiency could be overcome by computing each $P[i,k]$ once and storing the result in a table for future use.
- The table is filled for $i=n,n-1,\ldots,2,1$ in that order for $1 \leq k \leq W$.
- First row (initialization)

$$
\begin{array}{cccccccc}
 k & 1 & 2 & \ldots & w_{n-1} & w_n & w_{n+1} & \ldots & W \\
 P[n,k] & 0 & 0 & \ldots & 0 & b_n & b_n & \ldots & b_n
\end{array}
$$
Example

\(n=5, \; W=10, \; w = [2, 2, 6, 5, 4], \; b = [2, 3, 5, 4, 6] \)

\[P[i,k] = \max\{P[i+1,k], \; b_i + P[i+1,k-w_i]\} \]
Example

\(n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6] \)

\[
P[i,k] = \max \{ P[i+1,k], b_i + P[i+1,k-w_i] \}
\]

Example

\(n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6] \)

\[
P[i,k] = \max \{ P[i+1,k], b_i + P[i+1,k-w_i] \}
\]
Example

\(n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6]\)

\[
P[i,k] = \max \{P[i+1,k], \ b_i + P[i+1,k-w_i]\}
\]

Example

\(n=5, \ W=10, \ w = [2, 2, 6, 5, 4], \ b = [2, 3, 5, 4, 6]\)

\[
x = [0, 0, 1, 0, 1] \quad x = [1, 1, 0, 0, 1]
\]
0-1 knapsack in Python (dyn prog)

```python
def knapsack(items, w):
    P, n = {}, len(items)
    for j in range(w+1):
        P[n, j] = b(items[n-1]) if w(items[n-1]) <= j else 0
    for i in range(len(items)-1, 0, -1):
        for j in range(w+1):
            if w(items[i-1]) > j:
                P[i, j] = P[i+1, j]
            else:
                P[i, j] = max(P[i+1, j],
                              b(items[i-1]) + P[i+1, j-w(items[i-1])])
    return P
```

Time- and space-complexity

- Time complexity: $O(nW)$
- Technically, this is not a polynomial time algorithm
- These class of algorithms are called *pseudo-polynomial*
- Space complexity: $O(nW)$
Longest common subsequence

Longest Common Subsequence

A sequence $Z = \langle z_1, z_2, \ldots, z_k \rangle$ is a subsequence of a sequence $X = \langle x_1, x_2, \ldots, x_m \rangle$ if Z can be generated by striking out some (or none) elements from X.

For example, $\langle b, c, d, b \rangle$ is a subsequence of $\langle a, b, c, a, d, c, a, b \rangle$.
Longest Common Subsequence

The **longest common subsequence problem** is the problem of finding, for given two sequences $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$, a maximum-length common subsequence of X and Y.

For example, given

$X = \begin{array}{cccccc}
 & B & D & C & A & B & A \\
\end{array}$

$Y = \begin{array}{cccccc}
 A & B & C & B & D & A & B \\
\end{array}$

$Z = LCS(X, Y) = BCBA$

$X = \begin{array}{cccccc}
 B & D & C & A & B & A \\
\end{array}$

$Y = \begin{array}{cccccc}
 A & B & C & B & D & A & B \\
\end{array}$
Optimal Substructure

Theorem. Let \(Z = \langle z_1, \ldots, z_k \rangle \) be any LCS of \(X \) and \(Y \).
1. If \(x_m = y_n \), then \(z_k = x_m = y_n \) and \(Z_{k-1} \) is an LCS of \(X_{m-1} \) and \(Y_{n-1} \)
2. If \(x_m \neq y_n \), then \(z_k \neq x_m \) implies that \(Z \) is an LCS of \(X_{m-1} \) and \(Y \)
3. If \(x_m \neq y_n \), then \(z_k \neq y_n \) implies that \(Z \) is an LCS of \(X \) and \(Y_{n-1} \)

Proof: (case 1: \(x_m = y_n \))
If \(z_k \neq x_m \), we could append \(x_m = y_n \) to \(Z \) to obtain a CS of \(X \) and \(Y \) of length \(k+1 \), which contradicts the optimality of \(Z \). Thus we must have that \(z_k = x_m = y_n \).

Let \(Z_{k-1} \) be a length-(\(k-1 \)) common subsequence of \(X_{m-1} \) and \(Y_{n-1} \). \(Z_{k-1} \) must be an LCS of \(X_{m-1} \) and \(Y_{n-1} \). If \(W \) is a common subsequence of \(X_{m-1} \) and \(Y_{n-1} \) longer than \(k-1 \), appending \(x_m = y_n \) to \(W \) would make \(W \) longer that \(Z \).
Recursive Formulation

- Define $c[i, j] =$ length of LCS of X_i and Y_j

\[
\begin{align*}
 c[i, j] &= \begin{cases}
 0 & \text{if } i = 0 \text{ or } j = 0, \\
 c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\
 \max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j.
 \end{cases}
\end{align*}
\]

- We want $c[m,n]$
- This gives a recursive algorithm and solves the problem
- But is it efficient?

Example

\[
c[\alpha, \beta] = \begin{cases}
 0 & \text{if } \alpha \text{ empty or } \beta \text{ empty}, \\
 c[\text{prefix}\alpha, \text{prefix}\beta] + 1 & \text{if } \text{end}(\alpha) = \text{end}(\beta),
 \end{cases}
\]

\[
\max(c[\text{prefix}\alpha, \beta], c[\alpha, \text{prefix}\beta]) & \text{ if } \text{end}(\alpha) \neq \text{end}(\beta).
\]

```
c[springtime, printing]
  \---
  c[springtim, printing]  c[springtime, printin]
  \---  \---
  [springti, printing]  [springtim, printin]  [springti, printin]  [springtim, printin]
  \---  \---  \---  \---
  [springt, printing]  [springti, printin]  [springt, printing]  [springtime, printin]  [springtime, printin]  [springtime, print]
  \---  \---  \---  \---
```

35
LCS in Python

```python
def LCS(X, Y):
    c = {}
    for i in range(len(X)+1):
        for j in range(len(Y)+1):
            if i == 0 or j == 0:
                c[i,j] = 0
            elif X[i-1] == Y[j-1]:
                c[i,j] = c[i-1,j-1] + 1
            else:
                c[i,j] = max(c[i-1,j], c[i,j-1])
    #...continues

Remark: c[i,j] contains the length of an LCS of X[:i] and Y[:j]
```

Time: \(O(mn) \)

Reporting the LCS in Python

```python
#...continued
i, j = len(X), len(Y)
LCS = []
while c[i,j]:
    while c[i,j] == c[i-1,j]:
        i -= 1
    while c[i,j] == c[i,j-1]:
        j -= 1
    i -= 1
    j -= 1
    LCS.append(X[i])
LCS.reverse()
return LCS
```

Time: \(O(m+n) \)
LCS algorithm

- Time complexity: $O(nm)$
- Space complexity: $O(nm)$
- Space can be reduced to linear by observing that we just need the previous row to compute the current row
- The length of the LCS can be computed easily in linear space, but how to traceback?

LCS in linear space

We calculate the optimal LCS path from $(0,0)$ to (n,m) that crosses through $(i,m/2)$ where i ranges from $[0,n]$

Define $length(i)$ as the length of the LCS path from $(0,0)$ to (n,m) that passes through cell $(i, m/2)$, for all choices of i
LCS in linear space

- $\text{prefix}(i) = |\text{LCS}(x_{[1\ldots m/2]}, y_{[1\ldots i]})|$
- $\text{suffix}(i) = |\text{LCS}(x_{[m/2+1\ldots m]}, y_{[i+1\ldots n]})| = |\text{LCS}(x^R_{[1\ldots m/2]}, y^R_{[i+1\ldots n-i]})|$
- $\text{length}(i) = \text{prefix}(i) + \text{suffix}(i)$ is the length of the LCS path that passes through cell $(i, m/2)$

Define $(\text{mid}, m/2)$ as the vertex that contains the optimal LCS path (assume for simplicity there is only one), that is \(\text{mid} = \arg\max_{0 \leq i \leq n} \text{length}(i)\)
Computing Prefix(i)

Compute $\text{prefix}(i)$ from $0 \rightarrow m/2$ where $\text{prefix}(i)$ is the length of the LCS path from $(0,0)$ to $(i,m/2)$

Computing Suffix(i)

Compute $\text{suffix}(i)$ from $m/2 \rightarrow m$ where $\text{suffix}(i)$ is the length of the LCS path from (n,m) to $(i,m/2)$
Finding the middle point

- Find the value \(\text{mid} \) that maximizes \(\{\text{prefix}(i) + \text{suffix}(i)\} \) that is \(\text{mid} = \arg\max_{0 \leq i \leq n} \{\text{prefix}(i) + \text{suffix}(i)\} \)

- You now have a middle vertex of the maximum path \((\text{mid}, m/2)\)
Time = Area: First Pass

- On first pass, the algorithm covers the entire area

\[\text{Area} = mn \]

Time = Area: Second Pass

- On second pass, the algorithm covers only 1/2 of the area

\[\text{Area} = mn/2 \]
Time = Area: Third Pass

- On third pass, only 1/4th is covered

\[\text{Area} = \frac{mn}{4} \]

Time/space complexity

- \(nm(1 + \frac{1}{2} + \frac{1}{4} + \ldots) \leq 2nm \)
- Time complexity \(O(nm) \)
- Space complexity \(O(n+m) \)
Bellman-Ford

Bellman-Ford Algorithm

• Dijkstra’s algorithm does not work when the weighted graph contains negative edges
 – we cannot be greedy anymore on the assumption that the lengths of paths will not decrease in the future

• Bellman-Ford algorithm detects negative cycles (returns false) or returns the shortest path-tree
Bellman-Ford Algorithm

- Use $d[]$ labels (like in Dijkstra and Prim)
- Initialize $d[s]=0$, $d[]=\infty$ otherwise
- Perform $|V|-1$ rounds
- In each round, attempt an edge relation for all the edges in the graph
- An extra round of edge relaxation can tell the presence of a negative cycle

Bellman-Ford Algorithm

Algorithm Bellman-Ford ($G(V,E),s$)

```plaintext
for each vertex $u$ in $V$
    $d[u] \leftarrow \infty$
    $d[s] \leftarrow 0$

for $i \leftarrow 1$ to $|V|-1$ do
    for each edge $(u,v)$ in $E$ do
        if $d[v] > d[u] + w(u,v)$ then
            $d[v] \leftarrow d[u] + w(u,v)$
    for each edge $(u,v)$ in $E$ do
        if $d[v] > d[u] + w(u,v)$ then
            return FALSE

return $d[],$ TRUE
```
Iteration 0

Iteration 1
Iteration 2

Iteration 3
Bellman-Ford is a dynamic programming algorithm. Subproblems: paths composed by increasing # of edges
Let \(d(i, j) \) = “cost of the shortest path from source \(s \) to vertex \(i \) that uses at most \(j \) edges/hops”

\[
d(i, j) = \begin{cases}
0 & \text{if } i = s, j = 0 \\
\infty & \text{if } i \neq s, j = 0 \\
\min_{(k,i) \in E} \{d(k, j-1) + w(k,i), d(i, j-1)\} & \text{if } j > 0
\end{cases}
\]

<table>
<thead>
<tr>
<th></th>
<th>z</th>
<th>u</th>
<th>v</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>\infty</td>
<td>\infty</td>
<td>\infty</td>
<td>\infty</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>\infty</td>
<td>7</td>
<td>\infty</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>-2</td>
</tr>
</tbody>
</table>
All-pair shortest path

All-pairs shortest path

- We want to compute the shortest path distance between every pair of vertices in a directed graph G (n vertices, m edges)

- We want to know $D[i,j]$ for all i,j, where $D[i,j]$=shortest distance from v_i to v_j
All-pairs shortest path

• If G has no negative-weight edges, we could use Dijkstra repeatedly from each vertex
 • Dijkstra runs in $O(m+n \log n)$ time
 • It would take $O(n (m+n \log n))$ time, that is $O(n^2 \log n + nm)$ time, which could be as large as $O(n^3)$

All-pairs shortest path

• If G has negative-weight edges (but no negative-weight cycles) we could use Bellman-Ford repeatedly from each vertex
 • Bellman-Ford runs in $O(nm)$
 • It would take $O(n^2 m)$ time, which could be as large $O(n^4)$ time
All-pairs shortest path

- We now see an algorithm to solve the all-pairs shortest path in $O(n^3)$ time

- The graph can contain negative-weight edges (but no negative-weight cycles)

All-pairs shortest path

- Let $G=(V,E)$ a weighted directed graph

- Let $V=(v_1,v_2,...,v_n)$

- Define cost function $D^k_{i,j} =$ "the shortest distance from v_i to v_j using only vertices $\{v_1,v_2,...,v_k\}$"
A dynamic programming shortest-path

Initially we set

\[D^0_{i,j} = \begin{cases}
0 & \text{if } i = j \\
\infty & \text{otherwise} \\
w((v_i, v_j)) & \text{if } (v_i, v_j) \in E
\end{cases} \]

A dynamic programming shortest-path

\[\min \{ v_{1\ldots k}, v_{1\ldots k-1} \} \]
A dynamic programming shortest-path

- The cost of going from \(v_i \) to \(v_j \) using vertices \(1, \ldots, k \) is the shorter between
 - (do not use \(v_k \)) The shortest path from \(v_i \) to \(v_j \) using vertices \(1, \ldots, k-1 \)
 - (use \(v_k \)) The shortest path from \(v_i \) to \(v_k \) using \(1, \ldots, k-1 \) plus the cost of the shortest path from \(v_k \) to \(v_j \) using \(1, \ldots, k-1 \)

Then

\[
D_{i,j}^k = \min \{ D_{i,j}^{k-1} , D_{i,k}^{k-1} + D_{k,j}^{k-1} \}
\]

All-pairs shortest path

Algorithm AllPairs(\(G \)):

Input: A weighted directed graph \(G \) with \(n \) vertices numbered \(v_1, v_2, \ldots, v_n \)

Output: A matrix \(D \) such that \(D[i,j] \) is distance from \(v_i \) to \(v_j \) in \(G \)

for \(i = 1 \) to \(n \) do
 for \(j = 1 \) to \(n \) do
 if \(i = j \) then
 Set \(D[i,i] \) = 0 and continue looping
 if \((v_i, v_j) \) is an edge in \(G \) then
 Set \(D[i,j] \) = \(w((v_i, v_j)) \)
 else
 Set \(D[i,j] \) = +\(\infty \)
 end for
end for

for \(i = 1 \) to \(n \) do
 for \(j = 1 \) to \(n \) do
 for \(k = 1 \) to \(n \) do
 Set \(D[i,j] \) = \(\min \{ D[i,j]^{k-1} \} \)
 end for
 end for
end for

Return \(D^n \)
All-pairs shortest path

- Floyd-Warshall’s algorithm computes the shortest path distance between each pair of vertices of G in $O(n^3)$ time

- FYI: when the graph is sparse consider Johnson’s algorithm, which has complexity $O(n^2 \log n + nm)$ even if there are negative weights

Reading assignment

- Chapter 15, “Dynamic Programming”
- Section 15.4, “Longest common subsequence”
- Section 15.2, “Matrix chain multiplication”
- Section 24.1, “The Bellman-Ford algorithm”
- Section 25.2, “All-pairs shortest path”