Greedy algorithms
and Union-Find

CS218, Fall 2016

Outline

• Intro
• Activity selection
• Dijkstra (single source shortest path)
• Prim and Kruskal (minimum spanning tree)
• Union-Find
Intro

Greedy method

- Typically applied to *optimization problems*, that is, problems that involve searching through a set of *configurations* to find one that minimizes/maximizes an *objective function* defined on these configuration

- *Greedy strategy*: at each step of the optimization procedure, choose the configuration which seems the best between all of those possible
Greedy method

- There are problems for which the globally optimal solution can be found by making a series of locally optimal (greedy) choices
 - Make whatever choice seems best at the moment and then solve the sub-problem arising after the choice is made
 - The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to sub-problems
- The greedy strategy does not always lead to the global optimal solution

Elements of Greedy Strategy

- Two ingredients that are exhibited by most problems that lend themselves to a greedy strategy
 - Greedy-choice property: a globally optimal solution can be reached by making a locally optimal choice
 - Optimal substructure: optimal solution to the problem consists of optimal solutions to sub-problems
An activity-selection problem

(aka, “task scheduling” problem)

An Activity Selection Problem

- **Input**: A set of activities \(S = \{a_1, \ldots, a_n\} \)
- Each activity has start time and a finish time \(a_i = (s_i, f_i) \)
- Two activities are compatible if and only if their interval does not overlap
- **Output**: a maximum-size subset of mutually compatible activities
An Activity Selection Problem

- Here are a set of tasks (start time, finish time):

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

- What is the maximum number of activities that can be completed?
 - \(\{a_3, a_9, a_{11}\} \) can be completed
 - But so can \(\{a_4, a_8, a_{11}\} \) which is a larger set
 - But it is not unique, consider \(\{a_2, a_4, a_9, a_{11}\} \)
“Greedy” Strategies

1. Longest first
2. Shortest first
3. Early start first
4. Early finish first
5. None of the above
Early Finish Greedy strategy

- Sort the activities by finish time
- Schedule the first activity
- Then, schedule the next activity (in sorted list) which starts after previous activity finishes (first non-conflicting task)
- Repeat until no more activities
Activity selection in Python

```python
def greedy_activity_selection(A):
    A.sort(key=itemgetter(1))  # Remark: sort A by finish time
    result = [A[0]]  # Remark: first activity in the solution
    i = 0
    for j in range(1, len(A)):
        if A[j][0] >= A[i][1]:
            result.append(A[j])  # Remark: start[j] >= finish[i]
            i = j
    return result
```

Time complexity? $O(n \log n)$ to sort, the rest is linear.

Why it is Greedy?

- Greedy in the sense that it leaves as much opportunity as possible for the remaining activities to be scheduled

- The greedy choice is the one that maximizes the amount of unscheduled time remaining
Correctness (optimality)

• We will show that
 • the problem has the optimal substructure property
 • the algorithm satisfies the greedy-choice property
 • Thus, the algorithm always finds the optimal solution

Greedy-Choice Property

• We want to show there is an optimal solution that begins with a greedy choice (i.e., with activity 1, which has the earliest finish time)
Greedy-Choice Property

• Suppose \(A \subseteq S \) is an optimal solution
 – Order the activities in \(A \) by finish time
 Let \(k \) be the first activity in \(A \)
 • If \(k = 1 \), the schedule \(A \) begins with a greedy choice
 • If \(k \neq 1 \), show that there is another optimal solution \(B \) that begins with the greedy choice (activity 1)
 – Let \(B = A - \{k\} \cup \{1\} \)
 • Activities in \(B \) are non-conflicting because activities in \(A \) are non-conflicting, \(k \) is the first activity to finish and \(f_1 \leq f_k \)
 • \(B \) has the same number of activities as \(A \) thus, \(B \) is optimal

Optimal Substructure

• Once the greedy choice of the first activity is made, the problem reduces to finding an optimal solution for the activity-selection problem over those activities in \(S \) that are compatible with the first activity
 – Optimal Substructure: if \(A \) is optimal to \(S \), then \(A' = A - \{1\} \) is optimal to \(S' = \{i \in S: s_i \geq f_1\} \)
 – Why? If we could find a solution \(B' \) to \(S' \) with more activities than \(A' \), adding activity 1 to \(B' \) would yield a solution \(B \) to \(S \) with more activities than \(A \) contradicting the optimality of \(A \)
Optimal Substructure

- After each greedy choice is made, we are left with an optimization problem of the same form as the original problem.

- By induction on the number of choices made, making the greedy choice at every step produces an optimal solution.

Dijkstra (single-source shortest path)
Shortest Path

• Let G be a weighted graph ($w(e)$ is the weight of the edge e)

• The length of a path P is the sum of the weights of the edges of P

• If $P=e_0, e_1, ..., e_{k-1}$ then the length of P is $\sum w(e_i)$

Single-Source Shortest Path

• The distance from a vertex u to vertex v, denoted by $\delta(u,v)$ is the length of a minimum length path (also called shortest-path) from u to v, if such a path exists

• If the path does not exists, $\delta(u,v)=+\infty$

• Note that if there is a negative cycle, then the distance may not be defined
Optimal Substructure

• **Fact:** subpaths of shortest paths are shortest paths
• **Proof:** decompose a shortest path
 \(p = \langle v_1, v_2, ..., v_k \rangle \) into \(v_i \rightarrow v_j \rightarrow v_k \). Then
 \(w(p) = w(v_i, v_j) + w(v_j, v_k) \).
 If \(v_i \rightarrow v_j \) is not optimal, then we could make the path
 \(v_i \rightarrow v_k \) shorter, which contradicts the optimality of \(p \).

Shortest-Path Problems

• **Single-source (single-destination):** Find a shortest path from a given source (vertex \(s \)) to all the other vertices → **greedy**
• **All-pairs:** Find shortest-paths for every pair of vertices → **dynamic programming**
• **Special cases**
 - Unweighted shortest-paths → **BFS**
 - Shortest path on a DAG → **topological sorting**
Dijkstra’s Algorithm

• Computes shortest paths from a start vertex s to all the other vertices
• Works on a simple graph with non-negative weights
• Computes for each vertex u the distance to u from the start vertex s, that is, the weight of a shortest path between s and u
• Keeps track of the set of vertices for which the distance has been computed, called the cloud S

Dijkstra’s Algorithm

• Every vertex has a label associated with it
• For any vertex u, we can refer to its “d label” as $d[u]$
• $d[u]$ stores an approximation of $\delta(s,u)$
• The algorithm will update a $d[u]$ value when it finds a shorter path from s to u
Dijkstra’s Algorithm

• When a vertex \(u \) is added to the cloud, its label \(d[u] \) is equal to the actual (final) distance between the starting vertex \(s \) and vertex \(u \)
• Initially, we set
 - \(d[s]=0 \) ...the distance from \(s \) to itself is 0...
 - \(d[u]=\infty \) for \(u \neq s \) ...these will change...

Edge relaxation

• For each vertex \(v \) in the graph, we maintain in \(d[v] \) the estimate of the shortest path from \(s \)
• Relaxing an edge \((u, v)\) means testing whether we can improve the shortest path to \(v \) found so far by going through \(u \)

Observe that after the relaxation of \((u,v)\), \(d[v] \leq d[u] + w(u,v) \)
Expanding the Cloud

• Repeat until all vertices have been put in the cloud
 – let \(u \) be a vertex not in the cloud that has smallest \(d[u] \)
 (on the first iteration, the starting vertex will be chosen)
 – we add \(u \) to the cloud \(S \)
 – we update \(d[.] \) of the adjacent vertices of \(u \) as follows
 (edge relaxation)

 for each vertex \(z \) adjacent to \(u \) do
 if \(z \) is not in the cloud \(S \) then
 if \(d[u] + \text{weight}(u,z) < d[z] \) then
 \(d[z] \leftarrow d[u] + \text{weight}(u,z) \)

Dijkstra’s

Algorithm ShortestPath\((G,v)\):

Input: A simple undirected weighted graph \(G \) with nonnegative edge weights,
 and a distinguished vertex \(v \) of \(G \)

Output: A label \(D[u] \), for each vertex \(u \) of \(G \), such that \(D[u] \) is the distance from
 \(v \) to \(u \) in \(G \)

Initialize \(D[v] \leftarrow 0 \) and \(D[u] \leftarrow +\infty \) for each vertex \(u \neq v \).

Let a priority queue \(Q \) contain all the vertices of \(G \) using the \(D \) labels as keys.

while \(Q \) is not empty do
 {pull a new vertex \(u \) into the cloud}
 \(u \leftarrow Q.\text{removeMin()} \)
 for each vertex \(z \) adjacent to \(u \) such that \(z \) is in \(Q \) do
 {perform the relaxation procedure on edge \((u,z)\)}
 if \(D[u] + \text{weight}(u,z) < D[z] \) then
 \(D[z] \leftarrow D[u] + \text{weight}(u,z) \)
 Change to \(D[z] \) the key of vertex \(z \) in \(Q \).
return the label \(D[u] \) of each vertex \(u \)
Time complexity

- Use a heap-based priority queue Q to store the vertices not in the cloud, where $d[u]$ is the key of a vertex u in Q
- Insert all vertices in Q, takes $O(n \log n)$
- Each iteration of the while, we spend $O(\log n)$ time to remove vertex u from Q and $O(\deg(u) \log n)$ to perform the relaxation step
- Overall, $O(n \log n + \sum_v (\deg(v) \log n))$ which is $O((n+m) \log n)$ [using binary heaps]
- FYI: using Fibonacci heaps, Dijkstra runs in $O(m+n \log n)$

Greedy choice

- **Theorem:** In Dijkstra’s algorithm, whenever a vertex u is pulled into S, the label $d[u]$ is equal to $\delta(s,u)$ (the length of a shortest path from s to u), and that equality is maintained thereafter
Upper-bound property

• Lemma: For all v in V, $d[v] \geq \delta(s,v)$
• Proof: by induction on the number of relaxation steps.
• Base case: true at initialization (zero relaxations).
• Induction step: Let us consider the relaxation of edge (u,v). By inductive hypothesis we have $d[x] \geq \delta(s,x)$ for all the nodes x prior to the relaxation step. If $d[v]$ changes, we have $d[v] = d[u] + w(u,v) \geq \delta(s,u) + w(u,v) \geq \delta(s,v)$ thus the invariant is maintained (middle inequality due to the inductive hypothesis, the last one is due to triangle inequality).

Convergence property

• Lemma: If $s \rightarrow (u,v)$ is a shortest path and $d[u] = \delta(s,u)$, when we relax edge (u,v) we have $d[v] = \delta(s,v)$.
• Proof: By the upper-bound property if $d[u] = \delta(s,u)$ at some point before relaxing (u,v), then this equality holds thereafter. After relaxing edge (u,v) $d[v] \leq d[u] + w(u,v) = \delta(s,u) + w(u,v) = \delta(s,v)$ (the first inequality is due to the RELAX code, the last equality is due to optimal substructure).

Since $d[v] \geq \delta(s,v)$ we must have $d[v] = \delta(s,v)$.

51

52
Proof of Theorem (by contradiction)

• By the upper bound lemma the only way Dijkstra can be “wrong” is that $d[u] > \delta(s,u)$
• Let u be the first vertex pulled in S such that there is a path shorter than $d[u]$, i.e., $d[u] > \delta(s,u)$
• We will show that this leads to a contradiction

Proof of Theorem

• Let y be the first vertex outside S on the actual shortest path from s to u (y could be u)
• Let x be the predecessor of y (x could be s)
• Then it must be that $d[y] = \delta(s,y)$ because
 – the label $d[x]$ is set correctly because x is in S and u is the first vertex for which d is set incorrectly
 – when the algorithm pulled x into S, the algorithm relaxed the edge (x,y), setting $d[y]$ to the correct value (due to Convergence lemma)
Proof of Theorem

\[d[u] > \delta(s,u) \] (initial assumption)
\[= \delta(s, y) + \delta(y, u) \] (optimal substructure)
\[= d[y] + \delta(y, u) \] (correctness of \(d[y] \))
\[\geq d[y] \] (no negative weights)

- But if algorithm has chosen \(u \) to be next in \(S \), not \(y \) then \(d[u] \leq d[y] \)
- Thus, \(d[y] = \delta(s, y) = \delta(s, u) = d[u] \) at time of insertion of \(u \) into \(S \) (contradicts \(d[u] > \delta(s, u) \))
- Dijkstra’s algorithm is correct

Kruskal (minimum spanning tree)
Minimum Spanning Tree

- Given a weighted undirected graph G, find a tree T that spans all the vertices of G and minimizes the sum of the weights on the edges, that is
 \[w(T) = \sum_{e \in T} w(e) \]

- We want a spanning tree of minimum cost

Example

\[w(T) = 4 + 8 + 7 + 9 + 2 + 4 + 2 + 1 = 37 \]

Note that the MST is not necessarily unique

For example, add (a,h), delete (b,c)
Growing a MST: Generic algorithm

- Grow MST one edge at a time
- Manage a set of edges A, maintaining the following invariant
 - prior to each iteration, A is a subset of some MST
- At each iteration, we determine an edge (u,v) that can be added to A without violating this invariant
- If $A \cup \{(u,v)\}$ is also a subset of a MST, then (u,v) is called a safe edge for A

Generic MST algorithm

```plaintext
GENERIC-MST(G, w)
1  A ← ∅
2  while A does not form a spanning tree
3      do find an edge $(u, v)$ that is safe for A
4          A ← A ∪ {(u, v)}
5  return A
```

- Loop in lines 2-4 is executed $|V| - 1$ times because any MST tree contains $|V| - 1$ edges
- The overall execution time depends on how to find a safe edge (step 3)
Greedy Choice

- **Definitions**
 - **Cut** $(S, V-S)$: a partition of V
 - **Crossing edge**: one endpoint in S and the other in $V-S$
 - A cut respects a set of A of edges if no edges in A crosses the cut
 - A **light edge** crossing a partition if its weight is the minimum of any edge crossing the cut

- **Theorem.** Let A be a subset of E that is included in some MST of $G=(V,E)$. Let $(S, V-S)$ be any cut of G that respects A, and let (u,v) be a light edge crossing $(S, V-S)$. Then, edge (u,v) is safe for A.

Examples of Cuts and light edges

Figure 23.2 Two ways of viewing a cut $(S, V-S)$ of the graph from Figure 23.1. (a) The vertices in the set S are shown in black, and those in $V-S$ are shown in white. The edges crossing the cut are those connecting white vertices with black vertices. The edge (d, c) is the unique light edge crossing the cut. A subset A of the edges is shaded; note that the cut $(S, V-S)$ respects A, since no edge of A crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in the set $V-S$ on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on the right.
Proof

• Let T be a MST that includes A, and assume T does not contain the light edge (u, v)
• First, we construct another MST T' that includes (u, v)
 – Adding (u, v) to T induces a cycle
 – Let (x, y) be the edge on the cycle crossing $(S, V - S)$, then $w(u, v) \leq w(x, y)$, hence $w(u, v) - w(x, y) \leq 0$
 – $T' = T - (x, y) \cup (u, v)$
 – T' is also a MST since
 $w(T') = w(T) - w(x, y) + w(u, v) \leq w(T)$
• Second, we prove that (u, v) is a safe edge for A
 – Since $A \subseteq T$ and (x, y) is not in A then $A \subseteq T'$. Therefore $A \cup \{(u, v)\} \subseteq T'$. Since T' is a MST, (u, v) is safe for A

Optimal substructure property

• Let T be an MST of G and (u, v) be an edge in T
• Removing (u, v) partitions T into two trees T_1 and T_2
• Let $(S, V - S)$ be a cut that respects T_1 and T_2
• Let E_1 be the subset of edges incident to S, and E_2 be the subset of edges incident to $V - S$
• Claim: T_1 is an MST of $G_1 = (S, E_1)$, and T_2 is an MST of $G_2 = (V - S, E_2)$
 – Note that $w(T) = w(u, v) + w(T_1) + w(T_2)$
 – A spanning tree “cheaper” than T_1 or T_2 cannot exists for G_1 or G_2, otherwise T would not be optimal
Generic MST algorithm

\begin{algorithm}
\caption{GENERIC-MST(G, w)}
\begin{algorithmic}[1]
\State $A \leftarrow \emptyset$
\While{A does not form a spanning tree}
\State do find an edge (u, v) that is safe for A
\State $A \leftarrow A \cup \{(u, v)\}$
\EndWhile
\Return A
\end{algorithmic}
\end{algorithm}

The Algorithms of Kruskal and Prim

- **Kruskal’s algorithm**
 - A is a forest
 - The safe edge added to A is always a minimum-weight edge in the graph that connects two distinct trees in A

- **Prim’s algorithm**
 - A is a single tree
 - The safe edge added to A is always a minimum-weight edge connecting the tree to a vertex not in the tree
Prim’s Algorithm

- The edges in the set A always form a single tree.
- The tree starts from an arbitrary vertex and grows until the tree spans all the vertices in V.
- At each step, a light edge is added to the tree A that connects A to an isolated vertex of $G_A=(V, A)$.
- “Greedy” because the tree is augmented at each step with an edge that contributes the minimum amount possible to the tree’s weight.

Prim vs. Dijkstra

- Prim’s strategy similar to Dijkstra’s.
- Grows the MST T one edge at a time.
- “Cloud” covers A, that is, the portion of T already computed.
- Label $D[u]$ associated with each vertex u outside the cloud (distance to the cloud).
Prim’s algorithm

• For any vertex u, $D[u]$ represents the weight of the current best edge for joining u to the rest of the tree in the cloud (as opposed to the total sum of edge weights on a path from start vertex to u)

• Use a priority queue Q whose keys are D labels, and whose elements are vertex-edge pairs

Prim’s algorithm

• Any vertex v can be the starting vertex

• We still initialize $D[v] = 0$ and all the other $D[u]$ values to $+\infty$

• We can reuse code from Dijkstra’s, just change a few things
Prim’s algorithm

Algorithm PrimJarník(G):

Input: A weighted connected graph G with n vertices and m edges
Output: A minimum spanning tree T for G

Pick any vertex v of G
D[v] ← 0
for each vertex u ≠ v do
D[u] ← +∞
Initialize T ← 0.
Initialize a priority queue Q with an item ((u, null), D[u]) for each vertex u, where (u, null) is the element and D[u]) is the key.

while Q is not empty do
(u, e) ← Q.removeMin()
Add vertex u and edge e to T.
for each vertex v adjacent to u such that z is in Q do
[perform the relaxation procedure on edge (u, z)]
if w((u, z)) < D[z] then
D[z] ← w((u, z))
Change to (z, (u, z)) the element of vertex z in Q.
Change to D[z] the key of vertex z in Q.

return the tree T

Time complexity

- Initializing the queue takes O(n log n) [binary heap]
- Each iteration of the while, we spend O(log n) time to remove vertex u from Q and O(deg(u) log n) to perform the relaxation step
- Overall, O(n log n + Σ_v(deg(v) log n)) which is O((n+m) log n) [if using a binary heap]

FYI: using Fibonacci heaps, Prim runs in O(m+n log n)
Kruskal’s Algorithm

- Initialization: A is a forest of trees, where each node is a tree (with no edges)
- Sort the edges in increasing weight
- While A is not a spanning tree of G
 - Consider the next edges (u,v) in increasing order
 - Add (u,v) to A if it connects two distinct trees

Algorithm Kruskal(G):

Input: A simple connected weighted graph G with n vertices and m edges

Output: A minimum spanning tree T for G

for each vertex v in G **do**

- Define an elementary cluster $C(v) \leftarrow \{v\}$.
- Initialize a priority queue Q to contain all edges in G, using the weights as keys.

T $\leftarrow \emptyset$ \quad \{T will ultimately contain the edges of the MST\}

while T has fewer than $n - 1$ edges **do**

- $(u,v) \leftarrow Q\text{.removeMin}()$
- Let $C(v)$ be the cluster containing v, and let $C(u)$ be the cluster containing u.
- **if** $C(v) \neq C(u)$ **then**
 - Add edge (v,u) to T.
 - Merge $C(v)$ and $C(u)$ into one cluster, that is, union $C(v)$ and $C(u)$.

return tree T
Data Structure for Kruskal Algorithm

- The data structure maintains a forest of trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the following operations
 - $\text{find}(u)$: return the set storing u
 - $\text{union}(u,v)$: replace the sets storing u and v with their union
Union-Find Abstract Data Type

• Let $S = \{S_1, S_2, \ldots, S_k\}$ be a dynamic collection of disjoint sets

• Each set S_i is identified by a representative member (some member of the set)

Union-Find Abstract Data Type

• Operations

 Make-Set(x): create a new set S_x, whose only member is x
 (assuming x is not already in one of the sets)

 Union(x, y): replace two disjoint sets S_x and S_y represented by x and y by their union

 Find-Set(x): find and return the representative of the set S_i that contains x

• We will analyze the running time in terms of (n,m) where $n =$ # of Make-Set and $m =$ # Make-Set + #Union + #Find-Set $(m \geq n)$

• Note that each Union operation reduces the number of sets by one, so the number of Union is at most $n-1$
Disjoint sets: tree representation

- Each set is a tree, and the representative is the root
- Each element points to its parent in the tree
- The root points to itself

Example: disjoint sets tree representation

```
{c,h,e,b}  {f,g,d}  Union(e,g)
```

```plaintext
{c,h,e,b}   {f,g,d}   Union(e,g)
```

- In the diagram, the set `{c,h,e,b}` is represented by the tree with root `c`, and the set `{f,g,d}` is represented by the tree with root `f`.
- The `Union(e,g)` operation merges the trees, resulting in a single tree with root `f`.
- The final tree combines elements `c`, `d`, `e`, `g`, `h`, and `b` under root `f`.
Disjoint sets: tree representation

- **Make-Set**: takes $O(1)$
- **Find-Set**: takes $O(h)$ where h is the height of the tree
- **Union**: is performed by finding the two roots, and choosing one of the roots, to point to the other. This takes $O(h)$

- The complexity depends on how the trees are maintained

Disjoint sets: tree representation

- Two heuristics allow us to achieve a running time with is “almost linear” in the total number of operations m (that is, almost $O(1)$ amortized)
 1. Union by rank
 2. Path compression
Union by rank

- Goal: make trees as shallow as possible
- Track the estimated size of each sub-tree by storing the *rank* of each node (upper bound on the height of the subtree, or the log of the subtree size)
- **Union by rank**: the root with small rank is made to point to the root with larger rank
- When a *Union* is performed, the rank of the root might need to be updated
Path compression

- Goal: make trees as shallow as possible
- During a Find-Set operation, make each node on the find path point directly to the root
- Find-Set is a two-pass method: one pass to find the root, and a second pass to update each node in the path
- Path compression does not change any rank
Union-Find: pseudocode

<table>
<thead>
<tr>
<th>Make-Set(x)</th>
<th>Union(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x.p \leftarrow x)</td>
<td>Link(Find-Set(x), Find-Set(y))</td>
</tr>
<tr>
<td>(x.rank \leftarrow 0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>if (x.rank > y.rank) then (y.p \leftarrow x) /* x is the root */</td>
</tr>
<tr>
<td>else (x.p \leftarrow y) /* y is the root */</td>
</tr>
<tr>
<td>if (x.rank = y.rank) then (y.rank \leftarrow y.rank + 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Find-Set(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>if (x \neq x.p) then (x.p \leftarrow \text{Find-Set}(x,p))</td>
</tr>
<tr>
<td>return (x.p)</td>
</tr>
</tbody>
</table>
Observations about ranks

• Ranks satisfy the following properties
 – Longest path on the subtree rooted at $x \leq \text{rank}[x]$
 – For each node u, rank[u] is initially 0 then it increases monotonically with more and more Union until u
 becomes a non-root (at that time its rank is fixed)
 – The difference between the rank[u] and the rank[p[u]]
 increases monotonically with time
 – Along each path from a node to a root, the ranks are
 strictly increasing, i.e., rank[u] < rank[p[u]] if u non-root
• All properties above can be proven by induction

Union by rank and path compression

• When both heuristics are used, the worst-case time complexity is $O(m \alpha(n))$ where
 $\alpha(n)$ is the inverse of the Ackerman function
• Proof: too technical 😎
• The inverse Ackerman function grows so slowly that for all practical purposes
 $\alpha(n) \leq 4$ for very very large n
An alternative bound …

• We prove a slightly weaker bound
• Define the iterated logarithm as $\log^{(i)} n = n$ and $\log^{(i)} n = \log(\log^{(i-1)} n)$
• Define: $\log^* n = \min \{ i : \log^{(i)} n \leq 1 \}$ (log base 2)
• For example, $\log^* 2 = 1$, $\log^* 4 = 2$, $\log^* 16 = 3$, $\log^* 65536 = 4$, $\log^* (2^{65536}) = 5$
• Define the tetration (iterated exponentiation) as $2^{<1>} = 2$ and $2^{<i+1>} = 2^{2^{<i>}}$
• Fact: $\log^* n = i$ iff $2^{<i-1>} < n \leq 2^{<i>}$

Analysis

• First note that each Union requires two Find-Set

• We just need to find a bound on the time needed to perform m Find-Set
Properties of rank (1)

• **Lemma**: For all root nodes \(x \) of rank \(k \), the size of the tree rooted at \(x \) is at least \(2^k \).

Proof: by induction on the number of Union. Based on the fact that a root node with rank \(k \) is created by merging two trees with roots of rank \(k-1 \)

Properties of rank (2)

• **Lemma**: If there are \(n \) elements overall, at most \(n/2^k \) elements have rank in the range \((k, 2^k]\).

Proof: Prove first that there are at most \(n/2^k \) elements of rank \(k \). From the previous lemma the maximum number of nodes of rank \(k \) is reached when each node with rank \(k \) is the root of a tree that has exactly \(2^k \) nodes. In this case, the number of nodes of rank \(k \) is \(n/2^k \). Then,

\[
\sum_{r=k+1}^{2^k} \frac{n}{2^r} < n \sum_{r=k+1}^{\infty} \frac{1}{2^r} = \frac{n}{2^k} \sum_{r=1}^{\infty} \frac{1}{2^r} = \frac{n}{2^k}
\]
Properties of rank (3)

- **Corollary**: Every node has rank at most \(\lfloor \log_2 n \rfloor \)

Proof: There at most \(n/2^r \) nodes of rank \(r \). If \(r > \log_2 n \) then \(n/2^r < 1 \). Since ranks are natural numbers, the corollary follows.

Thus, the height of all trees is bounded by \(\log n \)

Analysis

- Partition the nodes according to their final rank. Put rank \(r \) nodes in block number \(\log^* r \) (for \(r = 0, 1, \ldots, \lfloor \log n \rfloor \))
 - Group 0 contains nodes of rank \((-1,2^0] = \{0,1\}\)
 - Group 1 contains nodes of rank \((1,2^1] = \{2\}\)
 - Group 2 contains nodes of rank \((2,2^2] = \{3,4\}\)
 - Group 3 contains nodes of rank \((4,2^3] = \{5,6,7,\ldots,16\}\)
 - Group 4 contains nodes of rank \((16,2^{16}] = \{17,18,\ldots,65536\}\)
 - Group 5 contains nodes of rank \((65536,2^{65536}] = \{65537,\ldots,2^{65536}\}\)
 - …
 - Group \(i \) contains nodes of rank \((2^{i-1},2^i]\)
 - …
- There are no more than \(\log^* n \) groups because the highest numbered block is \(\log^* (\log n) = \log^* n - 1 \)
Amortized Analysis

• Assign to each node u a fixed amount of dollars *(credit)*, each of which is worth $O(1)$ time

• **Rule:** A node u receives its credit as soon as it ceases to be a root, at which point its rank is fixed. If its rank is in the range $(k, 2^k]$ the node receives 2^k dollars of credit.

Analysis

• **Lemma:** We distribute at most $n \log^* n$ dollars of credit overall

 Proof: We are giving 2^k dollars to nodes of rank $(k, 2^k]$, and there are at most $n/2^k$ nodes in that group, so we give a total of n dollars for that group. Since there are at most $\log^* n$ groups, the conclusion follows.
Analysis

• We will show that each Find-Set costs \(\log^* n \) time plus the some additional time which is paid using the credit

• There are \(m \) Find-Set, overall time \(m \log^* n \)

• We distributed \(n \log^* n \) credit dollars

• Overall \(O((m+n) \log^* n) \)

• **Lemma:** Each Find-Set operation can be completed in \(O(\log^* n) \) time [plus additional cost using credit]

Proof: The cost of Find-Set is proportional to the number of pointers traversed until we get to the root.

When we move from \(u \) to \(p[u] \)

– (Block-charges) if (1) \(u \) and \(p[u] \) belong to different groups, or (2) \(u \) is the root, or (3) \(p[u] \) is the root, then we charge the Find-Set

– (Path-charges) otherwise (\(u \) and \(p[u] \) belong to the same group) we charge \(u \)’s credit

Since there are at most \(\log^* n \) groups, the conclusion follows.
Credit is sufficient for path-charges

- **Lemma**: If u’s final rank belongs to the range group $(k, 2^k]$, then u cannot be path-charged more than 2^k times.

Proof: When **Find-Set** path-charges u, u will be assigned a new parent during path-compression. Moreover, u’s new parent will have a higher rank than u’s old parent. Thus, once a node (other than the root or its child) is assigned block-charges, it will never again be assigned path-charges.
Proof (continued)

• Suppose u is in a group that has final rank in the range $(k, 2^k]$
• How many times can u be assigned a new parent (i.e., be path-charged) before u is assigned to a parent whose rank is in a different block?
• Worst-case: if u has the lowest rank in its block $(k+1)$ and its parent’s ranks successively are $k+2, k+3, \ldots, 2^k$
• Then u cannot be path-charged more than 2^k times, because after that parent of u will move to another group; whereupon u never has to pay path-charges again.

Summary

• For a sequence of $m>n$ Make-Set, Union, and Find-Set operations, of which n are Make-Set
• Union by rank + path compression yields $O(m \alpha(n))$ complexity
 [here we proved $O((m+n) \log^* n)]$
Kruskal’s running time

• $m = \#$ edges, $n = \#$ nodes
• Cost of initializing the priority queue (or sorting) is $O(m \log m)$ which is $O(m \log n)$
• $O(m)$ Find-set and Union and $O(n)$ Make-set, overall $O(m \alpha(n))$
• Overall running time is $O(m \log n)$
• Sorting dominates the complexity, but there are cases in which Union-Find’s complexity becomes critical

Reading assignment

• Chapter 17, “Greedy algorithms”
• Section 24.3, “Dijkstra’s algorithm”
• Section 23.2, “Kruskal and Prim”
• Chapter 21, “Data Structures for Disjoint Sets”