Greedy algorithms and Union-Find

CS218, Fall 2016

Outline

• Intro
• Activity selection
• Dijkstra (single source shortest path)
• Prim and Kruskal (minimum spanning tree)
• Union-Find
Intro

Greedy method

• Typically applied to optimization problems, that is, problems that involve searching through a set of configurations to find one that minimizes/maximizes an objective function defined on these configuration

• Greedy strategy: at each step of the optimization procedure, choose the configuration which seems the best between all of those possible
Greedy method

- There are problems for which the globally optimal solution can be found by making a series of locally optimal (greedy) choices
 - Make whatever choice seems best at the moment and then solve the sub-problem arising after the choice is made
 - The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to sub-problems
- The greedy strategy does not always lead to the global optimal solution

Elements of Greedy Strategy

- Two ingredients that are exhibited by most problems that lend themselves to a greedy strategy
 - Greedy-choice property: a globally optimal solution can be reached by making a locally optimal choice
 - Optimal substructure: optimal solution to the problem consists of optimal solutions to sub-problems
An activity-selection problem

(aka, “task scheduling” problem)

An Activity Selection Problem

• **Input:** A set of activities $S = \{a_1, \ldots, a_n\}$
• Each activity has start time and a finish time $a_i = (s_i, f_i)$
• Two activities are compatible if and only if their interval does not overlap
• **Output:** a maximum-size subset of mutually compatible activities
An Activity Selection Problem

• Here are a set of tasks (start time, finish time):

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

• What is the maximum number of activities that can be completed?
 - $\{a_3, a_9, a_{11}\}$ can be completed
 - But so can $\{a_1, a_4, a_8, a_{11}\}$ which is a larger set
 - But it is not unique, consider $\{a_2, a_4, a_9, a_{11}\}$
“Greedy” Strategies

1. Longest first
2. Shortest first
3. Early start first
4. Early finish first
5. None of the above
Early Finish Greedy strategy

- Sort the activities by finish time
- Schedule the first activity
- Then, schedule the next activity (in sorted list) which starts after previous activity finishes (first non-conflicting task)
- Repeat until no more activities
Activity selection in Python

```python
def greedy_activity_selection(A):
    A.sort(key=itemgetter(1))
    result = [A[0]]
    i = 0
    for j in range(1, len(A)):
        if A[j][0] >= A[i][1]:
            result.append(A[j])
            i = j
    return result
```

Time complexity? $O(n \log n)$ to sort, the rest is linear.

Why it is Greedy?

- Greedy in the sense that it leaves as much opportunity as possible for the remaining activities to be scheduled

- The greedy choice is the one that maximizes the amount of unscheduled time remaining
Correctness (optimality)

- We will show that
 - the problem has the optimal substructure property
 - the algorithm satisfies the greedy-choice property
- Thus, the algorithm always finds the optimal solution

Greedy-Choice Property

- We want to show there is an optimal solution that begins with a greedy choice (i.e., with activity 1, which has the earliest finish time)
Greedy-Choice Property

• Suppose $A \subseteq S$ is an optimal solution
 – Order the activities in A by finish time
 Let k be the first activity in A
 • If $k = 1$, the schedule A begins with a greedy choice
 • If $k \neq 1$, show that there is another optimal solution B that
 begins with the greedy choice (activity 1)
 – Let $B = A - \{k\} \cup \{1\}$
 • Activities in B are non-conflicting because activities in A
 are non-conflicting, k is the first activity to finish and $f_1 \leq f_k$
 • B has the same number of activities as A thus, B is optimal

Optimal Substructure

• Once the greedy choice of the first activity is
 made, the problem reduces to finding an
 optimal solution for the activity-selection
 problem over those activities in S that are
 compatible with the first activity
 – **Optimal Substructure**: if A is optimal to S, then
 $A' = A - \{1\}$ is optimal to $S' = \{i \in S : s_i \geq f_1\}$
 – Why? If we could find a solution B' to S' with
 more activities than A', adding activity 1 to B'
 would yield a solution B to S with more activities
 than A contradicting the optimality of A
Optimal Substructure

• After each greedy choice is made, we are left with an optimization problem of the same form as the original problem

• By induction on the number of choices made, making the greedy choice at every step produces an optimal solution

Dijkstra (single-source shortest path)
Shortest Path

- Let G be a weighted graph ($w(e)$ is the weight of the edge e)

- The length of a path P is the sum of the weights of the edges of P

- If $P=e_0,e_1,...,e_{k-1}$ then the length of P is $\sum w(e_i)$

Single-Source Shortest Path

- The distance from a vertex u to vertex v, denoted by $\delta(u,v)$ is the length of a minimum length path (also called shortest-path) from u to v, if such a path exists

- If the path does not exists, $\delta(u,v)=+\infty$

- Note that if there is a negative cycle, then the distance may not be defined
Optimal Substructure

• **Fact:** subpaths of shortest paths are shortest paths

• **Proof:** decompose a shortest path

 $p = \langle v_1, v_2, \ldots, v_k \rangle$ into $v_i \rightarrow v_j \rightarrow v_k$. Then

 $w(p) = w(v_1, v_i) + w(v_i, v_j) + w(v_j, v_k)$. If $v_i \rightarrow v_j$
 is not optimal, then we could make the path
 $v_i \rightarrow v_k$ shorter, which contradicts the
 optimality of p.

Shortest-Path Problems

• **Single-source (single-destination):** Find a
 shortest path from a given source (vertex s)
 to all the other vertices \rightarrow greedy

• **All-pairs:** Find shortest-paths for every pair
 of vertices \rightarrow dynamic programming

• Special cases

 – **Unweighted shortest-paths** \rightarrow BFS

 – **Shortest path on a DAG** \rightarrow topological sorting
Dijkstra’s Algorithm

- Computes shortest paths from a start vertex s to all the other vertices
- Works on a simple graph with non-negative weights
- Computes for each vertex u the distance to u from the start vertex s, that is, the weight of a shortest path between s and u
- Keeps track of the set of vertices for which the distance has been computed, called the cloud S

Dijkstra’s Algorithm

- Every vertex has a label associated with it
- For any vertex u, we can refer to its “d label” as $d[u]$
- $d[u]$ stores an approximation of $\delta(s,u)$
- The algorithm will update a $d[u]$ value when it finds a shorter path from s to u
Dijkstra’s Algorithm

- When a vertex u is added to the cloud, its label $d[u]$ is equal to the actual (final) distance between the starting vertex s and vertex u
- Initially, we set
 - $d[s]=0$...the distance from s to itself is 0...
 - $d[u]=\infty$ for $u \neq s$...these will change...

Edge relaxation

- For each vertex v in the graph, we maintain in $d[v]$ the estimate of the shortest path from s
- Relaxing an edge (u,v) means testing whether we can improve the shortest path to v found so far by going through u

Observe that after the relaxation of (u,v), $d[v] \leq d[u] + w(u,v)$
Expanding the Cloud

- Repeat until all vertices have been put in the cloud
 - let u be a vertex not in the cloud that has smallest $d[u]$
 (on the first iteration, the starting vertex will be chosen)
 - we add u to the cloud S
 - we update $d[.]$ of the adjacent vertices of u as follows
 (edge relaxation)

 for each vertex z adjacent to u do
 if z is not in the cloud S then
 if $d[u] + \text{weight}(u,z) < d[z]$ then
 $d[z] \leftarrow d[u] + \text{weight}(u,z)$

Dijkstra’s

Algorithm ShortestPath(G,v):

Input: A simple undirected weighted graph G with nonnegative edge weights, and a distinguished vertex v of G

Output: A label $D[u]$, for each vertex u of G, such that $D[u]$ is the distance from v to u in G

Initialize $D[v] \leftarrow 0$ and $D[u] \leftarrow +\infty$ for each vertex $u \neq v$.

Let a priority queue Q contain all the vertices of G using the D labels as keys.

while Q is not empty do
 {pull a new vertex u into the cloud}
 $u \leftarrow Q$.removeMin()
 for each vertex z adjacent to u such that z is in Q do
 {perform the relaxation procedure on edge (u,z)}
 if $D[u] + \text{weight}((u,z)) < D[z]$ then
 $D[z] \leftarrow D[u] + \text{weight}((u,z))$
 Change to $D[z]$ the key of vertex z in Q.
 return the label $D[u]$ of each vertex u
Time complexity

- Use a heap-based priority queue Q to store the vertices not in the cloud, where $d[u]$ is the key of a vertex u in Q
- Insert all vertices in Q, takes $O(n \log n)$
- Each iteration of the while, we spend $O(\log n)$ time to remove vertex u from Q and $O(deg(u) \log n)$ to perform the relaxation step
- Overall, $O(n \log n + \sum_v(deg(v) \log n))$ which is $O((n+m) \log n)$ [using binary heaps]
- FYI: using Fibonacci heaps, Dijkstra runs in $O(m+n \log n)$

Greedy choice

- Theorem: In Dijkstra’s algorithm, whenever a vertex u is pulled into S, the label $d[u]$ is equal to $\delta(s,u)$ (the length of a shortest path from s to u), and that equality is maintained thereafter
Upper-bound property

- Lemma: For all v in V, $d[v] \geq \delta(s,v)$
- Proof: by induction on the number of relaxation steps.
 - Base case: true at initialization (zero relaxations).
 - Induction step: Let us consider the relaxation of edge (u,v). By inductive hypothesis we have $d[x] \geq \delta(s,x)$ for all the nodes x prior to the relaxation step. If $d[v]$ changes, we have $d[v] = d[u] + w(u,v) \geq \delta(s,u) + w(u,v) \geq \delta(s,v)$ thus the invariant is maintained (middle inequality due to the inductive hypothesis, the last one is due to triangle inequality)

Convergence property

- Lemma: If $s \rightarrow (u,v)$ is a shortest path and $d[u] = \delta(s,u)$, when we relax edge (u,v) we have $d[v] = \delta(s,v)$.
- Proof: By the upper-bound property if $d[u] = \delta(s,u)$ at some point before relaxing (u,v), then this equality holds thereafter. After relaxing edge (u,v) $d[v] \leq d[u] + w(u,v) = \delta(s,u) + w(u,v) = \delta(s,v)$

Since $d[v] \geq \delta(s,v)$ we must have $d[v] = \delta(s,v)$.
Proof of Theorem (by contradiction)

• By the upper bound lemma the only way Dijkstra can be “wrong” is that $d[u] > \delta(s,u)$
• Let u be the first vertex pulled in S such that there is a path shorter than $d[u]$, i.e., $d[u] > \delta(s,u)$
• We will show that this leads to a contradiction

Proof of Theorem

• Let y be the first vertex outside S on the actual shortest path from s to u (y could be u)
• Let x be the predecessor of y (x could be s)
• Then it must be that $d[y] = \delta(s,y)$ because
 – the label $d[x]$ is set correctly because x is in S and u is the first vertex for which d is set incorrectly
 – when the algorithm pulled x into S, the algorithm relaxed the edge (x,y), setting $d[y]$ to the correct value (due to Convergence lemma)
Proof of Theorem

\[d[u] > \delta(s,u) \quad \text{(initial assumption)} \]
\[= \delta(s,y) + \delta(y,u) \quad \text{(optimal substructure)} \]
\[= d[y] + \delta(y,u) \quad \text{(correctness of } d[y] \text{)} \]
\[\geq d[y] \quad \text{(no negative weights)} \]

- But if algorithm has chosen \(u \) to be next in \(S \), not \(y \) then \(d[u] \leq d[y] \)
- Thus, \(d[y] = \delta(s,y) = \delta(s,u) = d[u] \) at time of insertion of \(u \) into \(S \) (contradicts \(d[u] > \delta(s,u) \))
- Dijkstra’s algorithm is correct

Kruskal (minimum spanning tree)
Minimum Spanning Tree

- Given a weighted undirected graph G, find a tree T that spans all the vertices of G and minimizes the sum of the weights on the edges, that is
 \[w(T) = \sum_{e \in T} w(e) \]

- We want a spanning tree of minimum cost

Example

\[
w(T) = 4 + 8 + 7 + 9 + 2 + 4 + 2 + 1 = 37
\]

Note that the MST is not necessarily unique

For example, add (a,h), delete (b,c)
Growing a MST: Generic algorithm

- Grow MST one edge at a time
- Manage a set of edges A, maintaining the following invariant
 - prior to each iteration, A is a subset of some MST
- At each iteration, we determine an edge (u,v) that can be added to A without violating this invariant
- If $A \cup \{(u,v)\}$ is also a subset of a MST, then (u,v) is called a safe edge for A

Generic MST algorithm

```
GENERIC-MST(G, w)
1   A ← ∅
2   while A does not form a spanning tree
3      do find an edge $(u, v)$ that is safe for $A$
4         A ← A ∪ {(u, v)}
5   return A
```

- Loop in lines 2-4 is executed $|V| - 1$ times because any MST tree contains $|V| - 1$ edges
- The overall execution time depends on how to find a safe edge (step 3)
Greedy Choice

• Definitions
 – Cut $(S, V-S)$: a partition of V
 – Crossing edge: one endpoint in S and the other in $V-S$
 – A cut respects a set of A of edges if no edges in A crosses the cut
 – A light edge crossing a partition if its weight is the minimum of any edge crossing the cut

• Theorem. Let A be a subset of E that is included in some MST of $G=(V,E)$. Let $(S, V-S)$ be any cut of G that respects A, and let (u,v) be a light edge crossing $(S, V-S)$. Then, edge (u,v) is safe for A.

Examples of Cuts and light edges

![Figure 23.2](image_url)

[Figure 23.2] Two ways of viewing a cut $(S, V-S)$ of the graph from Figure 23.1. (a) The vertices in the set S are shown in black, and those in $V-S$ are shown in white. The edges crossing the cut are those connecting white vertices with black vertices. The edge (d, c) is the unique light edge crossing the cut. A subset A of the edges is shaded: note that the cut $(S, V-S)$ respects A, since no edge of A crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in the set $V-S$ on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on the right.
Proof

• Let T be a MST that includes A, and assume T does not contain the light edge (u, v)
• First, we construct another MST T' that includes (u,v)
 – Adding (u,v) to T induces a cycle
 – Let (x,y) be the edge on the cycle crossing $(S,V-S)$, then $w(u,v) \leq w(x,y)$, hence $w(u,v) - w(x,y) \leq 0$
 – $T' = T - (x,y) U (u,v)$
 – T' is also a MST since $w(T') = w(T) - w(x,y) + w(u,v) \leq w(T)$
• Second, we prove that (u,v) is a safe edge for A
 – Since $A \subseteq T$ and (x,y) is not in A then $A \subseteq T'$. Therefore $A \cup \{(u,v)\} \subseteq T'$. Since T' is a MST, (u,v) is safe for A

Optimal substructure property

• Let T be an MST of G and (u,v) be an edge in T
• Removing (u,v) partitions T into two trees T_1 and T_2
• Let $(S,V-S)$ be a cut that respects T_1 and T_2
• Let E_1 be the subset of edges incident to S, and E_2 be the subset of edges incident to $V-S$
• Claim: T_1 is an MST of $G_1 = (S,E_1)$, and T_2 is an MST of $G_2 = (V-S,E_2)$
 – Note that $w(T) = w(u,v) + w(T_1) + w(T_2)$
 – A spanning tree “cheaper” than T_1 or T_2 cannot exists for G_1 or G_2, otherwise T would not be optimal
Generic MST algorithm

\textsc{Generic-MST}(G, w)
1 \hspace{1em} A \leftarrow \emptyset
2 \hspace{1em} \textbf{while} A does not form a spanning tree
3 \hspace{2em} \textbf{do} find an edge \((u, v)\) that is safe for \(A\)
4 \hspace{3em} A \leftarrow A \cup \{(u, v)\}
5 \hspace{1em} \textbf{return} A

The Algorithms of Kruskal and Prim

- Kruskal’s algorithm
 - \(A\) is a forest
 - The safe edge added to \(A\) is always a minimum-weight edge in the graph that connects two distinct trees in \(A\)

- Prim’s algorithm
 - \(A\) is a single tree
 - The safe edge added to \(A\) is always a minimum-weight edge connecting the tree to a vertex not in the tree
Prim’s Algorithm

- The edges in the set A always forms a single tree
- The tree starts from an arbitrary vertex and grows until the tree spans all the vertices in V
- At each step, a light edge is added to the tree A that connects A to an isolated vertex of $G_A=(V, A)$
- “Greedy” because the tree is augmented at each step with an edge that contributes the minimum amount possible to the tree’s weight

Prim vs. Dijkstra

- Prim’s strategy similar to Dijkstra’s
- Grows the MST T one edge at a time
- “Cloud” covers A, that is, the portion of T already computed
- Label $D[u]$ associated with each vertex u outside the cloud (distance to the cloud)
Prim’s algorithm

- For any vertex u, $D[u]$ represents the weight of the current best edge for joining u to the rest of the tree in the cloud (as opposed to the total sum of edge weights on a path from start vertex to u)
- Use a priority queue Q whose keys are D labels, and whose elements are vertex-edge pairs

Prim’s algorithm

- Any vertex v can be the starting vertex
- We still initialize $D[v]=0$ and all the other $D[u]$ values to $+\infty$
- We can reuse code from Dijkstra’s, just change a few things
Prim’s algorithm

Algorithm Prim’s algorithm.G:

Input: A weighted connected graph \(G \) with \(n \) vertices and \(m \) edges

Output: A minimum spanning tree \(T \) for \(G \)

1. Pick any vertex \(v \) of \(G \)
2. \(D[v] \leftarrow 0 \)
3. for each vertex \(u \neq v \) do

 - \(D[u] \leftarrow +\infty \)
 - Initialize \(T \leftarrow \emptyset \)
 - Initialize a priority queue \(Q \) with an item \(((u, \text{null}), D[u]) \) for each vertex \(u \), where \((u, \text{null})\) is the element and \(D[u] \) is the key.
4. while \(Q \) is not empty do

 - \((u, e) \leftarrow Q.\text{removeMin}() \)
 - Add vertex \(u \) and edge \(e \) to \(T \).
 - for each vertex \(z \) adjacent to \(u \) such that \(z \) is in \(Q \) do

 - \(D[z] \leftarrow w((u, z)) \)
 - if \(w((u, z)) < D[z] \) then

 - \(D[z] \leftarrow w((u, z)) \)
 - Change to \((z, (u, z))\) the element of vertex \(z \) in \(Q \).
 - Change to \(D[z] \) the key of vertex \(z \) in \(Q \).
5. return the tree \(T \)

Time complexity

- Initializing the queue takes \(O(n \log n) \) [binary heap]
- Each iteration of the while, we spend \(O(\log n) \) time to remove vertex \(u \) from \(Q \) and \(O(\deg(u) \log n) \) to perform the relaxation step
- Overall, \(O(n \log n + \sum_v (\deg(v) \log n)) \) which is \(O((n+m) \log n) \) [if using a binary heap]

- FYI: using Fibonacci heaps, Prim runs in \(O(m+n \log n) \)
Kruskal’s Algorithm

- Initialization: A is a forest of trees, where each node is a tree (with no edges)
- Sort the edges in increasing weight
- While A is not a spanning tree of G
 - Consider the next edges (u, v) in increasing order
 - Add (u, v) to A if it connects two distinct trees

Algorithm \text{Kruskal}(G):
\begin{itemize}
 \item \textbf{Input}: A simple connected weighted graph G with n vertices and m edges
 \item \textbf{Output}: A minimum spanning tree T for G
 \item for each vertex v in G do
 \begin{itemize}
 \item Define an elementary cluster $C(v) \leftarrow \{v\}$.
 \item Initialize a priority queue Q to contain all edges in G, using the weights as keys.
 \item $T \leftarrow \emptyset$ \hspace{1cm} \{ T will ultimately contain the edges of the MST\}
 \item while T has fewer than $n - 1$ edges do
 \begin{itemize}
 \item $(u, v) \leftarrow Q.\text{removeMin}()$
 \item Let $C(v)$ be the cluster containing v, and let $C(u)$ be the cluster containing u.
 \item if $C(v) \neq C(u)$ then
 \begin{itemize}
 \item Add edge (v, u) to T.
 \item Merge $C(v)$ and $C(u)$ into one cluster, that is, union $C(v)$ and $C(u)$.
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}
return tree T
Data Structure for Kruskal Algorithm

- The data structure maintains a forest of trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the following operations
 - $\text{find}(u)$: return the set storing u
 - $\text{union}(u,v)$: replace the sets storing u and v with their union

Union-Find
Union-Find Abstract Data Type

• Let $S = \{S_1, S_2, \ldots, S_k\}$ be a dynamic collection of disjoint sets

• Each set S_i is identified by a representative member (some member of the set)

Union-Find Abstract Data Type

• Operations

 Make-Set(x): create a new set S_x, whose only member is x
 (assuming x is not already in one of the sets)

 Union(x, y): replace two disjoint sets S_x and S_y represented by x
 and y by their union

 Find-Set(x): find and return the representative of the set S_x that contains x

• We will analyze the running time in terms of (n,m) where $n = \#\text{ of Make-Set}$ and

 $m = \#\text{ Make-Set} + \#\text{Union} + \#\text{Find-Set}$ \hspace{1em} (m \geq n)

• Note that each Union operation reduces the number of sets by one, so the number of Union is at most $n-1$
Disjoint sets: tree representation

- Each set is a tree, and the representative is the root
- Each element points to its parent in the tree
- The root points to itself

Example: disjoint sets tree representation

\[
\{c, h, e, b\} \quad \{f, g, d\} \quad \text{Union}(e, g)
\]
Disjoint sets: tree representation

- **Make-Set:** takes $O(1)$
- **Find-Set:** takes $O(h)$ where h is the height of the tree
- **Union:** is performed by finding the two roots, and choosing one of the roots, to point to the other. This takes $O(h)$

- The complexity depends on how the trees are maintained

Disjoint sets: tree representation

- Two heuristics allow us to achieve a running time with is “almost linear” in the total number of operations m (that is, almost $O(1)$ amortized)
 1. Union by rank
 2. Path compression
Union by rank

- Goal: make trees as shallow as possible
- Track the estimated size of each sub-tree by storing the rank of each node (upper bound on the height of the subtree, or the log of the subtree size)
- **Union by rank**: the root with small rank is made to point to the root with larger rank
- When a Union is performed, the rank of the root might need to be updated
Path compression

• Goal: make trees as shallow as possible
• During a **Find-Set** operation, make each node on the find path point directly to the root
• **Find-Set** is a two-pass method: one pass to find the root, and a second pass to update each node in the path
• Path compression does not change any rank

Example

Before the **Find-Set**(a)

After
Find-Set(I) → Find-Set(K)

Union-Find: pseudocode

<table>
<thead>
<tr>
<th>Make-Set(x)</th>
<th>Union(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.p ⇐ x</td>
<td>Link(Find-Set(x), Find-Set(y))</td>
</tr>
<tr>
<td>x.rank ⇐ 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>if x.rank > y.rank then y.p ⇐ x /* x is the root */</td>
</tr>
<tr>
<td>else x.p ⇐ y /* y is the root */</td>
</tr>
<tr>
<td>if x.rank = y.rank then y.rank ⇐ y.rank + 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Find-Set(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>if x ≠ x.p then x.p ⇐ Find-Set(x.p)</td>
</tr>
<tr>
<td>return x.p</td>
</tr>
</tbody>
</table>
Observations about ranks

- Ranks satisfy the following properties
 - Longest path on the subtree rooted at \(x \leq \text{rank}[x] \)
 - For each node \(u \), \(\text{rank}[u] \) is initially 0 then it increases monotonically with more and more Union until \(u \) becomes a non-root (at that time its rank is fixed)
 - The difference between the \(\text{rank}[u] \) and the \(\text{rank}[p[u]] \) increases monotonically with time
 - Along each path from a node to a root, the ranks are strictly increasing, i.e., \(\text{rank}[u] < \text{rank}[p[u]] \) if \(u \) non-root
- All properties above can be proven by induction

Union by rank and path compression

- When both heuristics are used, the worst-case time complexity is \(O(m \alpha(n)) \) where \(\alpha(n) \) is the inverse of the Ackerman function
- Proof: too technical 😞
- The inverse Ackerman function grows so slowly that for all practical purposes \(\alpha(n) \leq 4 \) for very very large \(n \)
An alternative bound …

• We prove a slightly weaker bound
• Define the iterated logarithm as $\log^{(0)} n = n$ and $\log^{(i)} n = \log(\log^{(i-1)} n)$
• Define: $\log^* n = \min\{i: \log^{(i)} n \leq 1\}$ (log base 2)
• For example, $\log^* 2 = 1$, $\log^* 4 = 2$, $\log^* 16 = 3$, $\log^* 65536 = 4$, $\log^* (2^{65536}) = 5$
• Define: $2^{<i>} = 2$ and $2^{<i+1>} = 2^{2^{<i>}}$
• Fact: $\log^* n = i$ iff $2^{<i-1>} < n \leq 2^{<i>}$

Analysis

• First note that each Union requires two Find-Set

• We just need to find a bound on the time needed to perform m Find-Set
Properties of rank (1)

- **Lemma**: For all root nodes x of rank k, the size of the tree rooted at x is at least 2^k.

Proof: by induction on the number of Union. Based on the fact that a root node with rank k is created by merging two trees with roots of rank $k-1$.

Properties of rank (2)

- **Lemma**: If there are n elements overall, at most $n/2^k$ elements have rank in the range $(k, 2^k]$.

Proof: Prove first that there are at most $n/2^k$ elements of rank k. From the previous lemma the maximum number of nodes of rank k is reached when each node with rank k is the root of a tree that has exactly 2^k nodes. In this case, the number of nodes of rank k is $n/2^k$. Then,

$$\sum_{r=k+1}^{2^k} \frac{n}{2^r} < n \sum_{r=k+1}^{\infty} \frac{1}{2^r} = \frac{n}{2^k} \sum_{r=1}^{\infty} \frac{1}{2^r} = \frac{n}{2^k}$$
Properties of rank (3)

- **Corollary**: Every node has rank at most \(\text{floor}(\log_2 n) \)

 Proof: There at most \(n/2^r \) nodes of rank \(r \). If \(r > \log_2 n \) then \(n/2^r < 1 \). Since ranks are natural numbers, the corollary follows.

 Thus, The height of all trees is bounded by \(\log n \)

Analysis

- Partition the nodes according to their final rank. Put rank \(r \) nodes in block number \(\log^* r \) (for \(r=0,1,...,\lfloor \log n \rfloor \))
 - Group 0 contains nodes of rank \((-1,2^0] = \{0,1\}\)
 - Group 1 contains nodes of rank \((1,2^1] = \{2\}\)
 - Group 2 contains nodes of rank \((2,2^2] = \{3,4\}\)
 - Group 3 contains nodes of rank \((4,2^3] = \{5,6,7,...,16\}\)
 - Group 4 contains nodes of rank \((16,2^4] = \{17,18,...,65536\}\)
 - Group 5 contains nodes of rank \((65536,2^{65536}] = \{65537,...,2^{65536}\}\)
 - ...
 - Group \(i \) contains nodes of rank \((2^{i-1}, 2^i] \)
 - ...

- There are no more than \(\log^* n \) groups because the highest numbered block is \(\log^* (\log n) = \log^* n - 1 \)
Amortized Analysis

• Assign to each node u a fixed amount of dollars (credit), each of which is worth $O(1)$ time

• Rule: A node u receives its credit as soon as it ceases to be a root, at which point its rank is fixed. If its rank is in the range $(k, 2^k]$ the node receives 2^k dollars of credit.

Analysis

• **Lemma**: We distribute at most $n \log^* n$ dollars of credit overall

 Proof: We are giving 2^k dollars to nodes of rank $(k, 2^k]$, and there are at most $n/2^k$ nodes in that group, so we give a total of n dollars for that group. Since there are at most $\log^* n$ groups, the conclusion follows.
Analysis

• We will show that each Find-Set costs \(\log^* n \) time plus the some additional time which is paid using the credit
• There are \(m \) Find-Set, overall time \(m \log^* n \)
• We distributed \(n \log^* n \) credit dollars
• Overall \(O((m+n) \log^* n) \)

• **Lemma:** Each Find-Set operation can be completed in \(O(\log^* n) \) time [plus additional cost using credit]

 Proof: The cost of Find-Set is proportional to the number of pointers traversed until we get to the root. When we move from \(u \) to \(p[u] \)

 – (Block-charges) if (1) \(u \) and \(p[u] \) belong to different groups, or (2) \(u \) is the root, or (3) \(p[u] \) is the root, then we charge the Find-Set

 – (Path-charges) otherwise (\(u \) and \(p[u] \) belong to the same group) we charge \(u \)'s credit

 Once a node (other than the root or its child) is assigned block-charges, it will never again be assigned path-charges. Since there are at most \(\log^* n \) groups, the conclusion follows.
Credit is sufficient for path-charges

- **Lemma**: If u’s final rank belongs to the range group $(k, 2^k]$, then u cannot be path-charged more than 2^k times.

Proof: When **Find-Set** path-charges u, u will be assigned a new parent during path-compression. Moreover, u’s new parent will have a higher rank than u’s old parent.
Proof (continued)

- Suppose u is in a group that has final rank in the range $(k, 2^k]$
- How many times can u be assigned a new parent (i.e., be path-charged) before u is assigned to a parent whose rank is in a different block?
- Worst-case: if u has the lowest rank in its block $(k+1)$ and its parent’s ranks successively are $k+2, k+3, \ldots, 2^k$
- Then u cannot be path-charged more than 2^k times, because after that parent of u will move to another group; whereupon u never has to pay path-charges again

Summary

- For a sequence of $m > n$ Make-Set, Union, and Find-Set operations, of which n are Make-Set
- Union by rank + path compression yields $O(m \alpha(n))$ complexity
 [here we proved $O((m+n) \log^* n)$]
Kruskal’s running time

- \(m = \# \text{ edges}, \; n = \# \text{ nodes} \)
- Cost of initializing the priority queue (or sorting) is \(O(m \log m) \) which is \(O(m \log n) \)
- \(O(m) \) Find-set and Union and \(O(n) \) Make-set, overall \(O(m \alpha(n)) \)
- Overall running time is \(O(m \log n) \)
- Sorting dominates the complexity, but there are cases in which Union-Find’s complexity becomes critical

Reading assignment

- Chapter 17, “Greedy algorithms”
- Section 24.3, “Dijkstra’s algorithm”
- Section 23.2, “Kruskal and Prim”
- Chapter 21, “Data Structures for Disjoint Sets”