20 The Membership Problem and the CYK Algorithm

Memebership Problem for CFLs: Given a contex-free grammar G and a word w, is w € L(G)?

A similar memebership problem for regular languages, when we are given a dfa A and are asking whether
w € L(A), is trivial, since we can just run A on w, and see whether it stops in a final state. It is not much
harder if we are given an nfa instead of a dfa. However, in case of a context-free grammar, it is not quite
obvious how to solve this problem. The naive approach would be to systematically apply the productions
to generate all strings up to some length (the length of w), and see if w is among them. This method,
however, is too time consuming.

The method we use is called dynamic programming. The general idea of dynamic programming is to
introduce a number of sub-instances of the problem, and compute their solution in order of increasing size.
The instances are defined in such a way that the solution for large instances can be computed efficiently
from the solutions of smaller instances.

In our application, it works as follows. We assume first that the grammar G is in CNF (otherwise, we
can always convert it to CNF.) Let w = a1a2 . ..ay,, where ai,...,a, € X. For all ¢ < j we define a set V; ;
that consists of those variables from which we can derive a;a;41 - ..a;, that is:

V;',j = {A|A:*>a,-az-+1...aj}.

We will compute all sets V; ; in an appropriate order. Notice that once we have computed all sets V; ;, we
are done, because w € L(G) if and only if S € Vi ,,.

We start by computing all sets V; ;. This is easy because each V; ; is just the set of all variables A such
that G has the production A — a;.

Now, for ¢ < j, we can express V; ; in terms of some sets Vj» j» such that j' —i’ < j—i. To compute V; ;,
we need to find all variables A such that A = aiaiy1 -.-aj. Since ¢ < j, in the derivation A S aiQiy1 - .- 0;
we must have first applied some production A — BC' (because of the Chomsky Normal Form). So this
derivation must look like this:

A= BC:*>a,~a,-+1...aj
But then B must derive some initial segment of a;a;41 - ..ar and C must derive the rest, that is
B= ;41 -..a and c= k410142 . .. Q5.

for some k. This, in turn, means that B € V;; and C' € V344,;. So we conclude that to determine V; ;, we
need to find all A’s for which there is a production A —+ BC where B € V;;, and C € Vj44,;, for some k.

Since V; ; depends on V; and Vj44,;, for k =14,...,j — 1, when we compute V; ; we must have all sets
Vik and Vj4q ; already computed. One ordering that will satisfy this property is to vary j = 2,...,n,
and for each j vary ¢ = j,j —1,...,1. (So we compute the V;; column by column, each column visited
bottom-up.)

The detailed algorithm is given below.

The CYK Algorithm: Let P be the set of productions of G.

fori=1tondoV;;:={A|A —a; € P}
for j:=2ton do
for i := j downto 1 do begin
Vij = UiZi{A|A = BC € P for some B € V;}, and C € Viy1}

end ;
if S € Vi, then w € L(G) else w ¢ L(G)

Example 1. Let G be the grammar below.

.

AB|SS|a
BS|CD b
DD|b
DE|alb
a

SS

MO QW= W®m
i1l 114

Let w = abaab. We represent the sets V; ; in a matrix, as follows:

a|Vigi | Vig | Vig | Via | Vigs
b | Vaa | Va3 | Vou | Vois
a|Vsz | Vas | Vags

a | Vaa | Vas

b | Vss

According to the algorithm, we start by computing the main diagonal of this matrix, then the second
column, third column, and so on:

a|S,CD 0 0 S,E S, E
b | AB,C A AS AS
a|S,CD|SABE S
al S,C,D 0
b | A B,C

For instance, in the initialization phase, we have V3 1 = {5, C, D} because all these nonterminals produce
a in one step. Similarly, Voo = {4, B,C}.

In the first iteration, for j = 2, we compute the entry Vi 2. Since Vi1 = {S,C,D}, Voo = {4, B,C},
take all combinations of variables from V;; and Va2: SA, SB, SC, CA, CB, CC, DA, DB and DC.
There are no productions with these pairs on the right hand side. So we get Vi, = 0.

In the second iteration, for j = 3, consider, for example, V5 3. We combine variables from V3 » and V3 3.
These combinations are AS, AC, AD, BS, BC, BD, CS, CC, CD. Of thse pairs, only BS appears in the
grammar, in production A — BC. So V53 = {A}. Etc, etc.

In column j = 4, consider V4. To compute this entry, we need to combine V5 » with V5 4 and V5 3 with
V4.4. In both cases, we find all variable pairs, and then we add the variables on the left-hand sides of the
corresponding productions to V5 4. The combination of V3 5 and V3 4 has pairs AS, AA, AB, AE, BS, BA,
BB, BE, CS, CA, CB, and CE. Since we have productions S -+ AB and A — BS, we add A and S to
Va,4. The combination of V5 3 and V4 4 has pairs AS, AC and AD. None of these appears in the grammar.
We conclude that V2 4 = {4, S}.

In general, when we compute an entry V; ;, we combine variables from V; ; with Vi1 ;, then V; ;41 with
Vita,j, then V; ;o with Vi, 3 ;, and so on. For each step, we get a number of variable pairs. For each pair

we check if it appears in the productions, and if so, we add the corresponding variables from the left-hand
sides to V.

When we are done filling the table, we examine the entry Vi 5. Since S € Vi, we conclude that
w € L(QG).

Example 2. Let now G be the following grammar:

S — AB|BC
A — BAja
B - CC|b
C — AB]la

Let w = baaba. The table V; ; will look like this:

b[B[SA] 0 0 | S4AC
alAC| B | B [SAC
a|AC|SC]| B

b[B [SA

a| AC

Since S € V4,5, we conclude that baaba € L(G).

For the same grammar, let’s also consider w = bbba. The table V; ; will look like this:

b B|0[0] A
b|B|® A
b|B|AS

al|l AC

Since S ¢ V14, we conclude that bbba ¢ L(G).

Constructing a derivation. Note that the algorithm, as presented, only determines whether w is
generated by G, but it does not produce a derivation for w (if w € L(G)). This can be easily fixed. We
simply retrace the computation backwards. First, we see what production caused S to be added to Vi .
Suppose the production was S — AB, with A € Vi ; and B € Vjy1,,. Thus we know that the first
production in the derivation is S — AB, and that from A we derived a; ...a; and from B we derived
ag+1 ---n. Now we recursively trace back the derivations from A and B. To make it more efficient, we
can record this information at the time when we add variables to the sets V; ;. For example, if A -+ BC
is a production, and A € V; i, B € Vi1 5, then can we put an entry Ay g ¢ into V; ;, where the subscripts
k, B, C indicate how A was obtained.

