
CS 141, Fall 2004 Warm-up questions

Here are some problems to warm up for quiz 1.

1. Order the following functions according to their asymptotic growth rate. Indicate
which functions belong to the same complexity class.

4n log n, 2n log n, n2 + 8n log n, 2n, (n + 4)(n− 6),
√

n, 2n−4, 2n/2

2. What is the definition of “worst case time-complexity” of an algorithm?

3. What is meant by the statement “the algorithm A runs in O(1) time”.

4. What is meant by the statement “the algorithm A runs in Θ(1) time”.

5. What is meant by the statement “the algorithm A runs in Ω(1) time”.

6. Mark by true or false each of the following (no need to prove)

5n ∈ O(n log n)
True
False

12n2 ∈ O(n logn)
True
False

√
n ∈ O(n logn)

True
False

n

log n
∈ Θ(n)

True
False

3n ∈ O(2n)
True
False

log 3n ∈ O(log 2n)
True
False

3n ∈ Ω(2n)
True
False

log 3n ∈ Ω(log 2n)
True
False

7. • Derive an exact (without using the “big-oh” notation) recurrence relation for the
worst-case time complexity of the following method



Algorithm Recursive (A : array, n : integer)
if n = 1 then return

else

B1 ← Recursive (A, n/2)
B2 ← Recursive (A, n/2)
for i← 0 to n− 1 do

for j ← 0 to n− 1 do

“do something” with B1 and B2

assuming that the statement return costs 1 elementary operation and “do some-
thing” costs c elementary operations

• solve exactly (without using the “big-oh” notation) the recurrence relation (as-
sume for simplicity that n is a power of two).

• prove by induction the correctness of your solution

8. For each of the following recurrence relations determine whether the Master Theorem
can be directly applied. If it can, give the asymptotic bound and show which one of the
three cases holds and why. If it cannot, show why all cases fail. Assume that T (1) = 1.

T (n) = 4T (n/4) + 6

T (n) = 4T (n/3) + n2

T (n) = 2T (n/2) + n/ log n

T (n) = 6T (n/6) + 3n− 5

T (n) = T (
√

n) + log n

9. Assume you are given an array A of size n containing real numbers. Describe and
analyze an efficient algorithm to determine n/4 number not in array A.

10. Assume you are given an array A of size n and an array B of size m, n ≥ m. The
elements in each array are integers in arbitrary order. Describe and analyze an efficient
algorithm to determine whether the elements in the two arrays are disjoint (i.e., there
are no duplicates). State your running time in terms of m and n.

11. Let S = {a, b, c, d, e, f, g} be a collection of objects with the following benefit-weight
values: a:(12,4), b:(10,6), c:(8,5), d:(11,7), e:(14,3), f :(7,1), g:(9,6). What is an optimal
solution to the fractional knapsack problem for S assuming we have a sack that can
hold objects with total weight 18? Show your work.

12. Suppose we are given a set of tasks specified by pairs of the start times and finish times
as

T = {(1, 2), (1, 3), (1, 4), (2, 5), (3, 7), (4, 9), (5, 6), (6, 8), (7, 9)}
Solve the task scheduling problem for this set of tasks.

13. Use the divide-and-conquer algorithm (Karatsuba algorithm) to compute 10110011×
10111010 in binary. Show your work.



14. Use Strassen’s matrix multiplication algorithm to multiply the following matrices

X =

(

3 2
4 8

)

Y =

(

1 5
9 6

)

15. Draw the frequency array and Huffman tree for the following string: "dogs do not

spot hot pots or cats".

16. Let A be an n×n array of 0’s and 1’s. Design an O(n2) time algorithm for finding the
largest square block of A which contains 1’s only.

17. Design a divide-and-conquer algorithm for finding the minimum and the maximum
element of n numbers using no more than 3n/2 comparisons.



Some solutions.

1. √
n < 4n log n < {n2 + 8n log n, (n + 4)(n− 6)} < 2n/2 < {2n, 2n−4} < 2n log n

2.3.4.5. See slides

6. T, F, T, F, F, T, T, T

7.

T (n) =

{

1 n = 1
2T (n/2) + cn2 n > 1

and T (n) = n + 2cn2 − 2cn

8.

T (n) = 4T (n/4) + 6 case (1) where ε = 1

T (n) = 4T (n/3) + n2 case (3) where ε ≤ 2− log3 4 and δ ≥ 2− log3 4

T (n) = 2T (n/2) + n/ log n all fail

T (n) = 6T (n/6) + 3n− 5 case (2) where k = 0

T (n) = T (
√

n) + log n does not match the template

9. Can be done in O(n) time by first finding the max and then printing the following numbers
max + 1, max + 2, . . . , max + n/4. Finding the min would also work.

10. Sort B in O(m log m). For each element in A search it in B using binary search. The
overall time is O(m log m + n log m).

16. By dynamic programming. Define l(i, j) to be the length of the side of the largest square
block of 1’s whose bottom-right corner is A(i, j). Write l(i, j) as a function of l(i− 1, j− 1),
l(i− 1, j) and l(i, j − 1).

17. First note that a simple linear scan would take 2n − 2 comparisons. In order to get to
3n/2, compare all pairs of adjacent values in A. The smaller goes in another array B, the
larger goes into an array C. This requires n/2 comparisons. Then, we find the minimum in
B using n/2 comparisons, and we find the maximum in C using n/2 comparisons.


