Problem 1. (15 points [writing/solving recurrence relations])

Solve exactly (that is, without using any asymptotic notation) the following recurrence relation by iterative substitutions

\[T(n) = \begin{cases}
1 & n = 1 \\
T\left(\frac{n}{9}\right) + \sqrt{n} & n > 1
\end{cases} \]

Answer: We have

\[T(n) = T(n/9) + \sqrt{n} \]
\[= T(n/9^2) + \sqrt{n}(1/3 + 1) \]
\[= T(n/9^3) + \sqrt{n}(1/9 + 1/3 + 1) \]
\[\ldots \]
\[= T(n/9^i) + \sqrt{n}\left(1/3^{i-1} + 1/3^{i-2} + \ldots + 1/3^1 + 1/3^0\right) \]
\[= T(n/9^i) + (3/2)\sqrt{n}\left(1 - 1/3^i\right) \]

now we set \(n/9^i = 1 \) which is \(i = \log_9 n \) and we get

\[T(n) = T(1) + (3/2)\sqrt{n}\left(1 - 1/3^{\log_9 n}\right) \]
\[= 1 + (3/2)\sqrt{n}\left(1 - 1/\sqrt{n}\right) \]
\[= \frac{3\sqrt{n} - 1}{2} \]

Problem 2. (15 points [writing/solving recurrence relations])

Using the Master method, give an asymptotic tight bound for \(T(n) \) in the following recurrence relation

\[T(n) = \begin{cases}
1 & n = 1 \\
2T\left(\frac{n}{4}\right) + \sqrt{n} \log n & n > 1
\end{cases} \]

Answer: We have \(a = 2, \ b = 4, \ f(n) = \sqrt{n} \log n \). We also have \(n^{\log_4 a} = n^{\log_4 2} = \sqrt{n} \). Clearly, \(f(n) \in \Theta(\sqrt{n} \log^k n) \) for \(k = 1 \). The second case of the Master Theorem applies, hence \(T(n) \in \Theta(\sqrt{n} \log^2 n) \).

Problem 3. (15 points [writing/solving recurrence relations])

In the algorithm SELECT described in class (linear-time selection), the input elements are divided into \(\lceil n/5 \rceil \) groups of 5. Suppose you modify the algorithm to divide the input elements into \(\lceil n/3 \rceil \)
groups of 3 instead. Let $T(n)$ denote the worst-case running time of the modified algorithm as a function of the input size n. Write a recurrence relation for $T(n)$, but do NOT solve it.

Answer: For groups of 3, the number of elements greater than x (and the number of element less than x) is at least

$$2 \left(\left\lfloor \frac{1}{2} \left\lfloor \frac{n}{3} \right\rfloor \right\rfloor - 2 \right) \geq \frac{n}{3} - 4$$

and the recurrence relation becomes

$$T_3(n) \leq T_3(\lfloor n/3 \rfloor) + T_3(2n/3 + 4) + O(n)$$

Problem 4. (20 points [divide & conquer])

An array A is said to have a majority element if half or more than half of the entries in A are exactly the same. Given an unsorted array $A[1 \ldots n]$ of n items (where n is a power of two) we want to determine whether A has a majority element, and if so, return such an item. Consider the following divide and conquer algorithm for this problem.

Algorithm Find-Majority ($A : $ array)
1 \hspace{1em} $n \leftarrow |A|$
2 \hspace{1em} if $n \leq 1$ then return $A[1]$
3 \hspace{1em} else
4 \hspace{1em} $a_1 \leftarrow$ Find-Majority($A[1, \ldots, n/2]$)
5 \hspace{1em} $a_2 \leftarrow$ Find-Majority($A[n/2 + 1, \ldots, n]$)
6 \hspace{1em} if the number of times a_1 appears in A is $\geq n/2$ then return a_1
7 \hspace{1em} else if the number of times a_2 appears in A is $\geq n/2$ then return a_2
8 \hspace{1em} else return Null

Is this algorithm correct i.e., does Find-Majority always return the majority element, if A has one in it (or NULL otherwise)? Give a counterexample if your answer is “No”, a brief argument of correctness (e.g., proof by induction) if your answer is “Yes”. You can assume n to be a power of 2.

Answer: The algorithm is incorrect. The simplest counter-example is $A = \{1, 2, 3, 2\}$, $n = 4$. From the recursive call on the first half of the array $\{1, 2\}$, we will get $a_1 = 1$. From the recursive call on the second half of the array $\{3, 2\}$, we will get $a_2 = 3$. Neither a_1 or a_2 occur at least $n/2 = 2$ times, so the algorithm will return NULL which is incorrect, since number 2 is a majority element in A.

Problem 5. (15 points [divide & conquer])

Write the pseudo-code for the $O(n \log n)$-time algorithm for closest pair that we described in class.

Answer: See slides.

Problem 6. (20 points [divide & conquer])
Suppose you have \(k \) sorted arrays, each with \(n \) elements, and you want to combine them into a single sorted array of \(kn \) elements. Describe a divide-and-conquer algorithm that takes \(O(kn \log k) \) time. Make sure you explain why your algorithm runs in \(O(kn \log k) \) time.

Hint: Use as a sub-routine ("black-box") the MERGE algorithm we described in class to merge two sorted arrays with \(n \) elements in \(O(n) \)-time.

1. Divide the arrays into two sets of \(k/2 \) arrays, where each array is of size \(n \).
2. Recursively merge the first set of arrays, giving an array of size \(nk/2 \).
3. Recursively merge the second set of arrays, giving another array of size \(nk/2 \).
4. Merge the two resulting arrays (of size \(nk/2 \) each) to get the result.

The total time \(T(n, k) \) satisfies the recurrence \(T(n, k) = 2T(n, k/2) + nk \), and \(T(n, 1) = 1 \).

In the recursive calls, \(n \) does not change.

At the \(i \)th level in the recursion tree, there are \(2^i \) subproblems, each with a set of \(k/2^i \) arrays, each taking time \(nk/2^i \). The total time at level \(i \) is \(2^i nk/2^i = nk \).

There are \(\log_2 k \) levels. Thus, the total time is \(O(nk \log k) \).