Problem 1. (15 points [writing/solving recurrence relations])

Solve exactly (that is, without using any asymptotic notation) the following recurrence relation by iterative substitutions

\[T(n) = \begin{cases}
1 & n = 1 \\
T\left(\frac{n}{4}\right) + \sqrt{n} & n > 1
\end{cases} \]

Answer: We have

\[
T(n) = T(n/4) + \sqrt{n} \\
= T(n/4^2) + \sqrt{n}(1/2 + 1) \\
= T(n/4^3) + \sqrt{n}(1/4 + 1/2 + 1) \\
\dots \\
= T(n/4^i) + \sqrt{n}\left(\frac{1}{2^{i-1}} + \frac{1}{2^{i-2}} + \ldots + \frac{1}{2^1} + \frac{1}{2^0}\right) \\
= T(n/4^i) + 2\sqrt{n}\left(1 - \frac{1}{2^i}\right)
\]

now we set \(n/4^i = 1\) which is \(i = \log_4 n\) and we get

\[
T(n) = T(1) + 2\sqrt{n}\left(1 - \frac{1}{2^{\log_4 n}}\right) \\
= 1 + 2\sqrt{n}(1 - 1/\sqrt{n}) \\
= 2\sqrt{n} - 1
\]

Problem 2. (15 points [writing/solving recurrence relations])

Using the Master method, give an asymptotic tight bound for \(T(n)\) in the following recurrence relation

\[T(n) = \begin{cases}
1 & n = 1 \\
3T\left(\frac{n}{9}\right) + \sqrt{n} \log n & n > 1
\end{cases} \]

Answer: We have \(a = 3, \ b = 9, \ f(n) = \sqrt{n} \log n\). We also have \(n^{\log_9 a} = n^{\log_9 3} = \sqrt{n}\). Clearly, \(f(n) \in \Theta(\sqrt{n} \log^k n)\) for \(k = 1\). The second case of the Master Theorem applies, hence \(T(n) \in \Theta(\sqrt{n} \log^2 n)\).

Problem 3. (15 points [writing/solving recurrence relations])

In the algorithm SELECT described in class (linear time selection), the input elements are divided in groups of 5. Write the recurrence relation for the time complexity of SELECT if you decided to divide the input in groups of 7. Do NOT solve the recurrence relation.
Answer: For groups of 7, the number of elements greater than \(x \) (and the number of elements less than \(x \)) is at least

\[
4 \left(\left\lceil \frac{1}{2} \frac{n}{7} \right\rceil - 2 \right) \geq 2n - 8
\]

and the recurrence relation becomes

\[
T_7(n) = \begin{cases}
\Theta(1) & n < 70 \\
T_7(\lceil n/7 \rceil) + T_7(5n/7 + 8) + O(n) & n \geq 70
\end{cases}
\]

Problem 4. (20 points [divide & conquer])

An array \(A \) is said to have a major element if half or more than half of the entries in \(A \) are exactly the same. Given an unsorted array \(A[1 \ldots n] \) of \(n \) items (where \(n \) is a power of two) we want to determine whether \(A \) has a majority element, and if so, return such an item. Consider the following divide and conquer algorithm for this problem.

\begin{algorithm}
\textbf{Algorithm} \texttt{Find-Majority} (\(A : \text{array} \))
\begin{algorithmic}
 \State \(n \leftarrow |A| \)
 \If {\(n \leq 1 \)} \textbf{return} \(A[1] \)
 \Else
 \State \(a_1 \leftarrow \texttt{Find-Majority}(A[1, \ldots, n/2]) \)
 \State \(a_2 \leftarrow \texttt{Find-Majority}(A[n/2 + 1, \ldots, n]) \)
 \If {the number of times \(a_1 \) appears in \(A \) is \(\geq n/2 \)} \textbf{return} \(a_1 \)
 \ElseIf {the number of times \(a_2 \) appears in \(A \) is \(\geq n/2 \)} \textbf{return} \(a_2 \)
 \Else \textbf{return} \texttt{Null} \EndIf
 \EndIf
\end{algorithmic}
\end{algorithm}

Is this algorithm correct i.e., does \texttt{Find-Majority} always return the majority element, if \(A \) has one in it (or \texttt{Null} otherwise)? Give a counterexample if your answer is “No”, a brief argument of correctness (e.g., proof by induction) if your answer is “Yes”. You can assume \(n \) to be a power of 2.

Answer: The algorithm is incorrect. The simplest counter-example is \(A = \{1, 2, 3, 2\} \), \(n = 4 \). From the recursive call on the first half of the array \(\{1, 2\} \), we will get \(a_1 = 1 \). From the recursive call on the second half of the array \(\{3, 2\} \), we will get \(a_2 = 3 \). Neither \(a_1 \) or \(a_2 \) occur at least \(n/2 = 2 \) times, so the algorithm will return \texttt{Null} which is incorrect, since number 2 is a majority element in \(A \).

Problem 5. (15 points [divide & conquer])

Write the pseudo-code for the \(O(n \log n) \)-time algorithm for closest pair that we described in class.

Answer: See slides.

Problem 6. (20 points [divide & conquer])
Suppose you have \(k \) sorted arrays, each with \(n \) elements, and you want to combine them into a single sorted array of \(kn \) elements. Describe a divide-and-conquer algorithm that takes \(O(kn \log k) \) time. Make sure you explain why your algorithm runs in \(O(kn \log k) \) time.

Hint: Use as a sub-routine ("black-box") the MERGE algorithm we described in class to merge two sorted arrays with \(n \) elements in \(O(n) \)-time.

1. Divide the arrays into two sets of \(k/2 \) arrays, each of size \(n \).
2. Recursively merge the first set of arrays, giving an array of size \(nk/2 \).
3. Recursively merge the second set of arrays, giving another array of size \(nk/2 \).
4. Merge the two resulting arrays (of size \(nk/2 \) each) to get the result.

The total time \(T(n, k) \) satisfies the recurrence \(T(n, k) = 2T(n, k/2) + nk \), and \(T(n, 1) = 1 \). In the recursive calls, \(n \) does not change.

At the \(i \)th level in the recursion tree, there are \(2^i \) subproblems, each with a set of \(k/2^i \) arrays, each taking time \(nk/2^i \). The total time at level \(i \) is \(2^i nk/2^i = nk \).

There are \(\log_2 k \) levels. Thus, the total time is \(O(nk \log k) \).