Practice problems

Analysis

• Mark T/F (no need to prove/explain)

\[\sqrt{n} \log n \in O(n \log n) \] □ True □ False

\[\frac{6n \log n}{\sqrt{n}} \in \Omega(\sqrt{n}) \] □ True □ False

\[\log 2^{n+1} \in \Theta(\log 3^n) \] □ True □ False
Analysis

- Mark T/F (no need to prove/explain)
 \[
 \sqrt{n \log n} \in O(n \log n) \quad \square \text{True} \quad \square \text{False}
 \]
 \[
 \frac{6n \log n}{\sqrt{n}} \in \Omega(\sqrt{n}) \quad \square \text{True} \quad \square \text{False}
 \]
 \[
 \log 2^{n+1} \in \Theta(\log 3^n) \quad \square \text{True} \quad \square \text{False}
 \]

Analysis of iterative algorithms

- Give a tight bound on the number of Hello’s produced as a function of \(n \)

\textbf{Algorithm} \textsc{Loop2} \((n : \text{integer}) \)
 \[
 \text{for } j \leftarrow 1 \text{ to } n^2 \log n \text{ do}
 \]
 \[
 \text{for } i \leftarrow 1 \text{ to } j \text{ do}
 \]
 \[
 \text{print } \text{“Hello”}
 \]
Analysis of iterative algorithms

• Give a tight bound on the number of Hello’s produced as a function of \(n \)

\[
\text{Algorithm \ LOOP2 (} n : \text{integer) \ }
\text{for } j \leftarrow 1 \text{ to } n^2 \log n \text{ do }
\text{for } i \leftarrow 1 \text{ to } j \text{ do }
\text{print “Hello”}
\]

• Answer: \(\Theta(n^4 \log^2 n) \)

Analysis of iterative algorithms

• Give a tight bound on the number of Hi’s produced as a function of \(n \)

\[
\text{Algorithm \ LOOP1 (} n : \text{integer) \ }
\text{for } i \leftarrow 1 \text{ to } n \log^2 n \text{ do }
\quad j \leftarrow i
\quad \text{while } j \leq n \text{ do }
\quad \text{print “Hi”}
\quad j \leftarrow j + 1
\]
Analysis of iterative algorithms

• Give a tight bound on the number of Hi’s produced as a function of n

Algorithm $\text{LOOP1} \ (n : \text{integer})$

for $i \leftarrow 1$ to $n \log^2 n$ do

\[
j \leftarrow i
\]

while $j \leq n$ do

print “Hi”

\[
j \leftarrow j + 1
\]

• Answer: $\Theta(n^2)$

Analysis (recurrence relation)

Problem: Solve using the Master Theorem

\[
T(n) = \begin{cases}
1 & n = 1 \\
7T\left(\frac{n}{2}\right) + n^2 & n > 1
\end{cases}
\]

Solution: The first case applies.

$T(n) \in \Theta\left(n^{\log_2 7}\right)$
Analysis (recurrence relation)

Problem: Solve using the Master Theorem

\[T(n) = \begin{cases}
1 & n = 1 \\
9T\left(\frac{n}{3}\right) + n^2 \log n & n > 1
\end{cases} \]

Solution: The second case applies \((k = 1)\).
\[T(n) \in \Theta\left(n^2 \log^2 n\right) \]

Analysis (recurrence relation)

Problem: Solve using the Master Theorem

\[T(n) = \begin{cases}
1 & n = 1 \\
T\left(\frac{n}{2}\right) + n \log n & n > 1
\end{cases} \]

Solution: The third case applies.
\[T(n) \in \Theta\left(n \log n\right) \]
Divide & Conquer

Divide & Conquer (knowledge)

Recall that Karatsuba's algorithm computes the product $y \times z$, where y and z are two n-bits integers. By splitting y in (a, b), and z in (c, d), where a, b, c, d are $n/2$-bits integers, we have that $y = a2^{n/2} + b$ and $z = c2^{n/2} + d$. Karatsuba's algorithm is based on the observation that

$$(a - b)(d - c) = (ad + bc) - (ac + bd)$$

contains two of the products we need to compute $y \times z$.

Write the pseudocode of Karatsuba's algorithm and write the recurrence relation associated with its time complexity (no need to solve it).
D&C algorithms covered in lectures

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(T(n) = T(n/2) + O(1))</th>
<th>(O(\log n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge Sort</td>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>Towers of Hanoi</td>
<td>(T(n) = 2T(n-1) + O(1))</td>
<td>(O(2^n))</td>
</tr>
<tr>
<td>Integer Multiplication</td>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>(O(n^{\log_3 3}))</td>
</tr>
<tr>
<td>Matrix Multiplication</td>
<td>(T(n) = 7T(n/2) + O(n^2))</td>
<td>(O(n^{\log_7 7}))</td>
</tr>
<tr>
<td>Closest Pair</td>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>Selection (k-th smallest)</td>
<td>(T(n) = T(n/5) + T(7n/10 + 6) + O(n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

D&C algorithms covered in homework

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(T(n) = T(n/2) + O(1))</th>
<th>(O(\log n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median of two sorted arrays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polynomial Multiplication</td>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>(O(n^{\log_3 3}))</td>
</tr>
<tr>
<td>Grouping into (k) groups</td>
<td>(linear-time selection (k) times)</td>
<td>(O(nk))</td>
</tr>
</tbody>
</table>

Today

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(T(n) = T(n/2) + O(1))</th>
<th>(O(\log n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak finding (unimodal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max subsequence</td>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>(O(n \log n))</td>
</tr>
</tbody>
</table>

Divide & Conquer (\(\log n \) design)

Suppose you are given an array \(A = \{a_1, a_2, \ldots, a_n\} \) of \(n \) distinct integers. You are told that the sequence of values \(a_1, a_2, \ldots, a_n \) is unimodal, that is, for some index \(p \in [1, n] \), the values in the array increase up to position \(p \) in \(A \), and then decrease the remainder of the way until position \(n \). Give an algorithm to find the position \(p \) in \(O(\log n) \) time. You can assume \(n \) to be a power of 2.
Divide & Conquer (n log n design)

Given an array A of n (possibly negative) integers, find two indices $1 \leq i \leq n$ and $1 \leq j \leq n$ such that the value of $\sum_{k=i}^{j} a_k$ is maximized.

Here are some examples (the solution is underlined):

- $A = [-2, 11, -4, 13, -5, 2]$ which has answer 20.
- $A = [1, -3, 4, -2, -1, 6]$ which has answer 7.
- $A = [-1, 4, -3, 5, -2, -1, 2, 6, -21]$ which has answer 11.

Write an $O(n \log n)$ time algorithm for the problem described above. The algorithm should return i and j. If all elements of the array are negative, the algorithm should return $i = j = 0$.

Divide & Conquer ("black box")

Assume you are given the procedure $\text{STRASSEN}(A, B, n)$ which implements Strassen algorithm. Recall that the procedure computes the product of two squared matrices A and B of size $n \times n$.

Using $\text{STRASSEN}(A, B, n)$ as a subroutine, show how you multiply an $n \times n$ matrix by an $n \times kn$ matrix ($k > 1$).

Briefly describe your algorithm, and analyze its time complexity as a function of n and k.
Divide & Conquer ("black box")

Given an unsorted array A of n distinct floating point numbers we want to print the smallest $\lfloor \sqrt{n} \rfloor$ numbers of A in sorted order. For instance given $A = \{3.1, 4.2, 1.013, 2.12, 5.50, 6.12, 0.15, 8.2, 9.1\}$ containing 9 numbers, the algorithm is supposed to print 0.15, 1.013, 2.12 in sorted order. Give a $O(n)$-time algorithm for this problem. **Hint:** Use linear-time SELECT (as a black box) to solve this problem.