Divide and Conquer

CS 141, Spring 2019
(Chapter 2)

Divide and Conquer

• *Divide*: If the input size is too large to deal with in a straightforward manner, divide the data into two or more disjoint subsets

• *Recur*: Use divide and conquer to solve the sub-problems associated with the data subsets

• *Conquer*: Take the solutions to the sub-problems and “merge” these solutions into a solution for the original problem
Divide and Conquer

Outline

• Already covered/known
 – Sorting: Mergesort
 – Searching: Binary Search
• Integer Multiplication (Karatsuba)
• Matrix Multiplication (Strassen)
• Closest Pair
• Linear-time selection
Integer multiplication (Karatsuba)

• Given positive integers y, z, compute $x = y \times z$
• A naïve multiplication algorithm is below

```python
def naive_mul(y, z):
    x = 0
    while z > 0:
        if z % 2 == 1:
            x += y
        y *= 2
        z /= 2
    return x
```

Remark: these two operations can be implemented as $O(1)$ shifts
Integer multiplication

Addition takes $O(n)$ bit operations, where n is the number of bits in y and z. The naive multiplication algorithm takes $O(n)$ n-bit additions. Therefore, the naive multiplication algorithm takes $O(n^2)$ bit operations.

Can we multiply using fewer bit operations?

Integer multiplication

Suppose n is a power of 2. Divide y and z into two halves, each with $n/2$ bits.

\[
\begin{array}{c|c|c}
\hline
y & a & b \\
\hline
z & c & d \\
\hline
\end{array}
\]
Integer multiplication

Then

\[y = a2^{n/2} + b \]
\[z = c2^{n/2} + d \]

and so

\[yz = (a2^{n/2} + b)(c2^{n/2} + d) \]
\[= ac2^n + (ad + bc)2^{n/2} + bd \]

This computes \(yz \) with 4 multiplications of \(n/2 \) bit numbers, and some additions and shifts. Running time given by \(T(1) = c \), \(T(n) = 4T(n/2) + dn \), which has solution \(O(n^2) \) by the General Theorem. No gain over naive algorithm!

Example 5.7: Consider the recurrence

\[T(n) = 4T(n/2) + n. \]

In this case, \(a^{\log_2 n} = n^{\log_2 4} = n^2 \). Thus, we are in Case 1, for \(f(n) \) is \(O(n^{2+v}) \) for \(v = 1 \). This means that \(T(n) \) is \(\Theta(n^2) \) by the master method.
Integer multiplication (Karatsuba algorithm)

• Consider the product
 \((a-b)(d-c) = (ad + bc) - (ac + bd)\)
• It contains two of the products we need \((ad\) and \(bc)\)
• Then
 \(yz = ac2^n + [(a-b)(d-c) + (ac+bd)]2^{n/2} + bd\)
• We need three multiplications of \(n/2\) bits and \(O(n)\) additional work

Therefore,
\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 3T(n/2) + dn & \text{otherwise}
\end{cases}
\]
where \(c, d\) are constants.

Therefore, by our general theorem, the divide and conquer multiplication algorithm uses
\[
T(n) = O(n \log^3 n) = O(n^{1.59})
\]
bit operations.
def multiply(y, z):
 l = max(len(y), len(z))
 if l == 1:
 return [y[0] * z[0]]
 y = [0 for i in range(len(y), l)] + y;
 z = [0 for i in range(len(z), l)] + z;
 m0 = (l + 1) / 2
 a = y[:m0]
 b = y[m0:]
 c = z[:m0]
 d = z[m0:]

Remark: pad y and z so that they have the same length

Karatsuba algorithm (continued)

p0 = multiply(a, c)
p1 = multiply(add(a, b), add(c, d))
p2 = multiply(b, d)

z0 = p0
z1 = subtract(p1, add(p0, p2))
z2 = p2

Remark: compute
z1 = p1 - p0 - p2
Remark: compute
z0 b^l + z1 b^(l/2) + z2

z0prod = z0 + [0 for i in range(0, l)]
z1prod = z1 + [0 for i in range(0, l / 2)]

return add(add(z0prod, z1prod), z2)
Matrix multiplication (Strassen)

Problem: Given two matrices Y and Z compute $X = Y \times Z$.
Matrix multiplication

```python
def mult(Y, Z):
    X = zero(len(Y), len(Z[0]))

    for i in range(len(Y)):
        for j in range(len(Z[0])):
            for k in range(len(Z)):
                X[i][j] += Y[i][k] * Z[k][j]

    return X
```

Algorithm `mult(Y, Z)` is $O(n^3)$, can we do better?

Matrix multiplication

Divide X, Y, Z each into four $(n/2) \times (n/2)$ matrices.

$$
X = \begin{bmatrix}
 I & J \\
 K & L
\end{bmatrix}
$$

$$
Y = \begin{bmatrix}
 A & B \\
 C & D
\end{bmatrix}
$$

$$
Z = \begin{bmatrix}
 E & F \\
 G & H
\end{bmatrix}
$$
Matrix multiplication

Then

\[
\begin{align*}
I &= AE + BG \\
J &= AF + BH \\
K &= CE + DG \\
L &= CF + DH
\end{align*}
\]

Matrix multiplication

Let \(T(n) \) be the time to multiply two \(n \times n \) matrices.

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 8T(n/2) + dn^2 & \text{otherwise}
\end{cases}
\]

where \(c, d \) are constants.
Matrix multiplication

Therefore,

\[T(n) = 8T(n/2) + dn^2 \]

\[= 8(8T(n/4) + d(n/2)^2) + dn^2 \]

\[= 8^2T(n/4) + 2dn^2 + dn^2 \]

\[= 8^3T(n/8) + 4dn^2 + 2dn^2 + dn^2 \]

\[= 8^iT(n/2^i) + dn^2 \sum_{j=0}^{i-1} 2^j \]

\[= 8^{\log n}T(1) + dn^2 \sum_{j=0}^{\log n-1} 2^j \]

\[= cn^3 + dn^2(n - 1) \]

\[= O(n^3) \]

Master Theorem case 1:

\[f(n) \in O(n^{\log_2 8 - \varepsilon}) ? \]

\[dn^2 \in O(n^{1-\varepsilon}) ? \text{ true for } \varepsilon=1 \]

Then \(T(n) \in \Theta(n^3) \)

Matrix multiplication

- The naïve Divide and Conquer algorithm is no better than the straightforward algorithm
- However, it gives us an insight on the next algorithm
- Strassen’s algorithm uses only 7 multiplications instead of 8
Strassen algorithm

Compute

\[
\begin{align*}
M_1 & := (A + C)(E + F) \\
M_2 & := (B + D)(G + H) \\
M_3 & := (A - D)(E + H) \\
M_4 & := A(F - H) \\
M_5 & := (C + D)E \\
M_6 & := (A + B)H \\
M_7 & := D(G - E)
\end{align*}
\]

Strassen algorithm

Then,\n
\[
\begin{align*}
I & := M_2 + M_3 - M_6 - M_7 \\
J & := M_4 + M_6 \\
K & := M_5 + M_7 \\
L & := M_1 - M_3 - M_4 - M_5
\end{align*}
\]
Strassen algorithm

\[I := M_2 + M_3 - M_6 - M_7 \]
\[= (B + D)(G + H) + (A - D)(E + H) \]
\[- (A + B)H - D(G - E) \]
\[= (BG + BH + DG + DH) \]
\[+ (AE + AH - DE - DH) \]
\[+ (-AH - BH) + (-DG + DE) \]
\[= BG + AE \]

Strassen algorithm

\[J := M_4 + M_6 \]
\[= A(F - H) + (A + B)H \]
\[= AF - AH + AH + BH \]
\[= AF + BH \]
Strassen algorithm

\[K := M_5 + M_7 \]
\[= (C + D)E + D(G - E) \]
\[= CE + DE + DG - DE \]
\[= CE + DG \]

Strassen algorithm

\[L := M_1 - M_3 - M_4 - M_5 \]
\[= (A + C)(E + F) - (A - D)(E + H) \]
\[- A(F - H) - (C + D)E \]
\[= AE + AF + CE + CF - AE - AH \]
\[+ DE + DH - AF + AH - CE - DE \]
\[= CF + DH \]
def strassen(Y, Z):
 if len(Y) <= 2:
 return mult(Y, Z)
 else:
 A, B, C, D = partition(Y)
 E, F, G, H = partition(Z)
 M1 = strassen(add(A, C), add(E, F))
 M2 = strassen(add(B, D), add(G, H))
 M3 = strassen(sub(A, D), add(E, H))
 M4 = strassen(A, sub(F, H))
 M5 = strassen(add(C, D), E)
 M6 = strassen(add(A, B), H)
 M7 = strassen(D, sub(G, E))
 I = sub(sub(add(M2, M3), M6), M7)
 J = add(M4, M6)
 K = add(M5, M7)
 L = sub(sub(sub(M1, M3), M4), M5)
 return recompose(I, J, K, L)

Analysis of Strassen algorithm

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 7T(n/2) + dn^2 & \text{otherwise}
\end{cases}
\]

where \(c, d \) are constants.
Analysis of Strassen algorithm

\[
T(n) = 7T(n/2) + dn^2 \\
= 7(7T(n/4) + d(n/2)^2) + dn^2 \\
= 7^2T(n/4) + 7dn^2/4 + dn^2 \\
= 7^3T(n/8) + 7^2dn^2/4^2 + 7dn^2/4 + dn^2 \\
= 7^iT(n/2^i) + dn^2 \sum_{j=0}^{i-1} (7/4)^j \\
= 7^{\log n}T(1) + dn^2 \sum_{j=0}^{\log n-1} (7/4)^j \\
= en^{\log 7} + dn^2(\frac{(7/4)^{\log n} - 1}{7/4 - 1}) \\
= en^{\log 7} + \frac{4}{3}dn^2(\frac{n^{\log 7}}{n^2} - 1) \\
= O(n^{\log 7}) \\
\approx O(n^{2.8})
\]

Master Thorem case 1:
\[f(n) \in O(n^{\log_7 7 - \epsilon})?\]
\[dn^2 \in O(n^{2.8-\epsilon})?\] true for \(\epsilon = 0.5\)
Then \(T(n) \in \Theta(n^{\log_7 7})\)

Discussion

- There is a large constant hidden which makes Strassen impractical, unless the matrices are large (\(n>45\)) and dense
- For sparse matrices there are faster methods
- Strassen is not as *numerically stable* as the naïve
- Sub-matrices at each level consume space
- FYI: the current best algorithm for dense matrices runs in \(O(n^{2.376})\)
- Lower bound \(\Omega(n^2)\) [for dense matrices]
Closest Pair Problem

- Let \(P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n) \) be a set \(S \) of \(n \) points in the plane
- **Problem:** Find the two closest points in \(S \)
- **Assumptions:**
 - \(n \) is a power of two
 - points are ordered by their \(x \) coordinate (if not, we can sort them in \(O(n \log n) \) time)
Closest-Pair Problem: Brute-force

- Compute the distance between every pair of distinct points
- Return the indexes of the points for which the distance is the smallest

Time complexity?

Closest-Pair: Divide and Conquer

Step 1. Divide the points in S into two subsets L and R by a vertical line $x = c$ so that half the points lie to the left or on the line and half the points lie to the right or on the line (c is the median of the x coord)
Closest-Pair: Divide and Conquer

Step 2. Find recursively the closest pairs for L and R. Let d_1, d_2 be the distances of the two closest pairs.
Set $d = \min\{d_1, d_2\}$

Closest Pair: Divide and Conquer

Step 3. Consider the vertical strip $2d$-wide centered at $x = c$. Let Y be the subset of points in this vertical strip of width $2d$
Closest Pair: Divide and Conquer

• **Observation 1:** if a pair of points p_L, p_R has distance less than d, both points of the pair **must** be within Y

![Diagram of observation 1]

Closest Pair: Divide and Conquer

Observation 2: Since all the points within L are at least d units apart, at most 4 points can reside within the $d \times d$ square (same is true for R)

![Diagram of observation 2]
Closest Pair: Divide and Conquer

Proof: Let’s suppose (for sake of contradiction) that five or more points are found in a square of size $d \times d$. Divide the square into four smaller squares of size $d/2 \times d/2$. At least one pair of points must fall within the same smaller square: these two points will be at a distance $d/\sqrt{2} < d$, which leads to a contradiction.

Consequence: At most 8 points can reside within the $d \times 2d$ rectangle, because on each side all points are at least d unit apart.
Closest Pair: Divide and Conquer

Step 4. For each point \(p \) in \(Y \), try to find points in \(Y \) that are within \(d \) units of \(p \). Only 7 points in \(Y \) that follow \(p \) need to be considered.

![Diagram showing close pairs and coincident points](image)

Closest pair in Python

```python
def closestPair(xP, yP):
    n = len(xP)
    if n <= 3:
        return bruteForceClosestPair(xP)
    Xl = xP[:n//2]
    Xr = xP[n//2:]
    Yl, Yr = [], []
    median = Xl[-1].x
    for p in yP:
        if p.x <= median:
            Yl.append(p)
        else:
            Yr.append(p)
```

Remark: \(xP \) and \(yP \) is the same of input points \((x,y)\), but \(xP \) is sorted by \(x \) and \(yP \) is sorted by \(y \).

Remark: \(Xl \) is the first half of the points sorted by \(x \), and \(Xr \) is the second half.

Remark: \(Yl \) contains the points (sorted by \(y \)) which have a \(x \) coordinate smaller than the median.
dl, pairl = closestPair(Xl, Yl)

\[\text{dr, pairr} = \text{closestPair(Xr, Yr)} \]

dm, pairm = (dl, pairl) if dl < dr else (dr, pairr)

\[\text{st} = \{p \text{ for } p \text{ in } yP \text{ if } \text{abs}(p.x - \text{median}) < dm \} \]

\[n_{st} = \text{len(st)} \]

\[\text{closest} = (dm, pairm) \]

if n_st > 1:
 for i in range(n_st-1):
 for j in range(i+1, min(i+8, n_st)):
 if d(st[i], st[j]) < closest[0]:
 closest = (d(st[i], st[j]), (st[i], st[j]))

return closest

Remark: variable \(\text{st} \) contains the points in the strip \([\text{median}-dm, \text{median}+dm]\) sorted by \(y \)

Remark: \(d(x,y) \) returns the distance between \(x \) and \(y \)

Analysis of the Closest-Pair Algorithm

- We can keep the points in \(Y \) stored in increasing order of their \(y \) coordinates, which is maintained by merging during the execution of step 4
- We can process the points in \(Y \) sequentially in linear time
- Running time is described by \(T(n) = 2T(n/2) + O(n) \)
- By the Master Theorem, \(T(n) \) is \(O(n \log n) \)
Linear-time selection

- **Problem:** Select the i-th smallest element in an unsorted array of size n (assume distinct elements)
- **Trivial solution:** sort A, select $A[i]$; time complexity is $O(n \log n)$

- Can we do it in linear time? Yes, thanks to Blum, Floyd, Pratt, Rivest, and Tarjan
Linear-time selection

Select \((A, \text{start, end, } i) \) /* \(i \) is the \(i \)-th order statistic */

1. divide input array \(A \) into \(\lfloor n/5 \rfloor \) groups of size 5
 (and one leftover group if \(n \% 5 \) is not 0)
2. find the median of each group of size 5 by sorting
 the groups of 5 and then picking the middle element
3. call Select recursively to find \(x \), the median of the \(\lfloor n/5 \rfloor \) medians
4. partition array around \(x \), splitting it into two arrays
 \(L \) (elements smaller than \(x \)) and \(R \) (elements bigger than \(x \))

5. \(k \triangleq \lfloor |L| + 1 \rfloor \)
 if \((i = k) \) then return \(x \)
 else if \((i < k) \) then Select \((L, i) \)
 else Select \((R, i - k) \)

[r] means the ceiling (rounding to the next integer) of real number \(r \)

Python linear-time selection

```python
def selection(a, rank):
    n = len(a)
    if n <= 5:
        return rank_by_sorting(a, rank)
    medians = [rank_by_sorting(a[i:i+5], 3)
               for i in range(0, n-4, 5)]
    median = selection(medians, (len(medians) + 1) // 2)
    L, R = [], []
    for x in a:
        if x < median:
            L += [x]
        else:
            R += [x]
    if rank <= len(L):
        return selection(L, rank)
    else:
        return selection(R, rank - len(L))
```

Stefano Lonardi, UCR
Example

Let us run Select(A, 1, 28, 11), where

\[A = \{12, 34, 0, 3, 22, 4, 17, 32, 3, 28, 43, 82, 25, 27, 34, 2, 19, 12, 5, 18, 20, 33, 16, 33, 21, 30, 3, 47\} \]

Note that the elements in this example are not distinct.

Example

First make groups of 5

<table>
<thead>
<tr>
<th>12</th>
<th>34</th>
<th>0</th>
<th>3</th>
<th>22</th>
<th>4</th>
<th>17</th>
<th>32</th>
<th>3</th>
<th>28</th>
<th>43</th>
<th>2</th>
<th>20</th>
<th>30</th>
<th>3</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>17</td>
<td>82</td>
<td>19</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>25</td>
<td>12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>34</td>
<td>18</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>
Example

Then find medians in each group

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>4</th>
<th>25</th>
<th>2</th>
<th>20</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td></td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>34</td>
<td>12</td>
<td>21</td>
<td>19</td>
<td>47</td>
</tr>
<tr>
<td>34</td>
<td>32</td>
<td>43</td>
<td>19</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>82</td>
<td>18</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

Example

Then find median of medians

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>4</th>
<th>25</th>
<th>2</th>
<th>20</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td></td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>34</td>
<td>12</td>
<td>21</td>
<td>19</td>
<td>47</td>
</tr>
<tr>
<td>34</td>
<td>32</td>
<td>43</td>
<td>19</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>82</td>
<td>18</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

12, 12, 17, 21, 30, 34
Example

Use 17 as the pivot value and partition original array

\[
\begin{array}{cccccccc}
0 & 4 & 25 & 2 & 20 & \boxed{3} \\
3 & 3 & 27 & 5 & 16 & \boxed{30} \\
12 & 17 & 34 & 12 & 21 & \boxed{47} \\
34 & 32 & 43 & 19 & 33 & \\
22 & 28 & 82 & 18 & 33 & \\
\end{array}
\]

12, 12, 17, 21, 30, 34

Example

After partitioning

\[L = \{12, 0, 3, 4, 3, 2, 12, 5, 16, 3\}\]

\[L \text{ contains 10 elements smaller than 17}\]

\{17\} \text{ this is the 11-th smallest}\n
\[R = \{34, 22, 32, 28, 43, 82, 25, 27, 34, 19, 18, 20, 33, 33, 21, 30, 47\}\]

\[R \text{ contains 17 elements bigger than 17}\]
Linear-time selection

- Finding the median of medians guarantees that x causes a “good split”
- At least a constant fraction of the n elements $\leq x$ and a constant fraction $> x$
- **Analysis**: we need to find the worst case for the size of L and R

Linear-time selection: analysis

Observation: At least 1/2 of the medians found in step 2 are greater than the median of medians x. So at least half of the $[n/5]$ groups contribute 3 elements that are bigger than x, except for the one group with less than 5 elements and the group with x itself
Linear-time selection: analysis

- Therefore there are
 \[3\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil - 2 \geq (3n/10) - 6 \]
 elements are \(> x \) (or \(< x \))

- So worst-case split has at most \((7n/10) + 6\)
 elements in “big” section of the problem, that is:
 \[\max\{|L|,|R|\} < (7n/10) + 6 \]

Running Time:

1. \(O(n) \) (break into groups of 5)
2. \(O(n) \) (sorting 5 numbers and finding median is \(O(1) \) time)
3. \(T(\lceil n/5 \rceil) \) (recursive call to find median of medians)
4. \(O(n) \) (partition is linear time)
5. \(T(7n/10 + 6) \) (maximum size of subproblem)

Recurrence relation

\[
T(n) = T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n) \quad n > 80
\]

\[
= \Theta(n) \quad n \leq 80
\]
Linear-time select: Analysis

Fact: \(T(n) = T(\lfloor n/5 \rfloor) + T(7n/10 + 6) + O(n) \) is \(O(n) \)

Proof:

Base case: easy (omitted).
\[
T(n) = T(\lfloor n/5 \rfloor) + T(7n/10 + 6) + O(n) \\
\leq c\lfloor n/5 \rfloor + c(7n/10 + 6) + O(n) \\
\leq c(n/5 + 1) + 7cn/10 + 6c + O(n) \\
= cn - [c(n/10 - 7) - dn] \\
\leq cn
\]

Inequality \(cn/10 - 7c - dn \geq 0 \) is equivalent to \(c \geq 10dn/(n-70) \) when \(n>70 \). We can assume that \(n \geq 140 \), so that \(n/(n-70) \geq 2 \). In that case, choosing \(c \geq 20d \) will satisfy the inequality (there is nothing special about choosing \(n \geq 140 \), a different choice of \(n > 70 \) will require to choose a different \(c \)).

Reading assignment on Chapter 2

- Mergesort (section 2.3)
- Binary Search (page 50, box)
- Integer Multiplication (Karatsuba, section 2.1)
- Matrix Multiplication (Strassen, section 2.5)
- Closest pair (problem 2.32)
- Medians (section 2.4 covers randomized)
- Skip FFT