Problem 1. (25 points [greedy])

Draw the Huffman tree and find the optimal prefix code for the symbols in the following frequency table

Answer:

<table>
<thead>
<tr>
<th>symbol</th>
<th>frequency</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>1010</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>1011</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>1001</td>
</tr>
<tr>
<td>E</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>10001</td>
</tr>
</tbody>
</table>

```
          D
           1
          /  
         0    1
        /     /
      E      6
      /  
     0    0
    /    /
  45 1  15
    /  
A   1  9
    /      /
  25 1  0
    /  
  0   0
```

Problem 2. (25 points [greedy])

In the activity selection problem we discussed in class, we are given a set of activities S, where each activity a is defined by a start time s_a and a finish time f_a; the objective is to produce the largest subset of non-conflicting activities. The greedy algorithm first sorts the activities in S by finish time, then schedules first the activity in S that has the earliest finish time (greedy choice). Prove that there exists an optimal solution that begins with a greedy choice. Complete the proof.

Answer: See slides.

Problem 3. (25 points [dynamic programming])
In this problem you are asked to traceback the solution of an instance of 0-1 knapsack with \(n = 6 \) items, with weights \(w_1 = 2, w_2 = 4, w_3 = 6, w_4 = 3, w_5 = 5, w_6 = 3 \), benefits \(b_1 = 1, b_2 = 3, b_3 = 5, b_4 = 4, b_5 = 4, b_6 = 2 \), and a knapsack size \(W = 11 \).

Recall that we define the table \(P[i, k] \) as the maximum profit possible using items \(\{i, i+1, \ldots, n\} \) and residual (knapsack) capacity \(k \). The table is filled according to the following rules:

\[
P[i, k] = \begin{cases}
0 & \text{if } i = n \text{ and } w_n > k \\
b_n & \text{if } i = n \text{ and } w_n \leq k \\
P[i + 1, k] & \text{if } i < n \text{ and } w_i > k \\
\max\{P[i + 1, k], P[i + 1, k - w_i] + b_i\} & \text{if } i < n \text{ and } w_i \leq k
\end{cases}
\]

1. Draw the traceback pointers for the optimal solution(s) from the cell in bold.

2. Write the optimal solution(s): which items are selected? Compute that total benefit and the total weight of the optimal solution(s).

Answer: Here is the traceback pointers from cell (1,11):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

We have two optimal solutions, namely \(x_1 = (1, 0, 1, 1, 0, 0) \) and \(x_2 = (0, 0, 0, 1, 1, 1) \). The total weight for \(x_1 \) is \(2 + 6 + 3 = 11 \) and the total benefit is \(1 + 5 + 4 = 10 \). The total weight for \(x_2 \) is \(3 + 5 + 3 = 11 \) and the total benefit is \(4 + 4 + 2 = 10 \).

Problem 4. (25 points [dynamic programming])

Consider the weighted version of the activity selection problem we discussed in class, where now tasks have benefits. You are given an array \(A \) of \(n \) tasks described by start time \(s_i \), finish time \(f_i \), and benefit \(b_i \), which are all integers. Tasks are sorted in increasing order of \(s_i \) in \(A \). Give a dynamic programming algorithm that computes the largest possible total benefit for a subset of non-conflicting tasks in \(A \). Your algorithm should run in \(O(n^2) \) time (explain why).

For instance, if \(A = \{(1, 4, 5), (1, 3, 6), (2, 3, 2), (4, 5, 1), (4, 6, 3), (5, 6, 3)\} \) where each triple is \((s_i, f_i, b_i)\), the highest total benefit is 10 (see figure on the right).

Hints: Define \(P[i] \) to be the largest total benefit for a subset of tasks \(\{1, 2, \ldots, i\} \) which includes task \(i \). The structure of the recurrence relation for \(P[i] \) is similar to the one for longest increasing subsequence.
Answer: The tasks are sorted by start times in A. The recurrence relation to fill the table P is the following

$$P[i] = \begin{cases} b_1 & \text{if } i = 1 \\ b_i + \max_{1 \leq j < i} \{P[j] : s_i \geq f_j\} & \text{otherwise} \end{cases}$$

where we assume that max of an empty set returns 0. The condition $s_i \geq f_j$ ensures that task i can be scheduled without conflict with task j. In that case, we fetch the optimal way to schedule $\{1, 2, \ldots, j\}$ by getting $P[j]$. Here is the implementation:

$$P[1] \leftarrow b_1$$

for $i \leftarrow 2$ to n

$\quad max \leftarrow 0$

for $j \leftarrow 1$ to i

\quad if $s_i \geq f_j$ and $P[j] > max$ then $max \leftarrow P[j]$

$\quad P[i] \leftarrow b_i + max$

The time complexity is $O(n^2)$, while the space complexity is $O(n)$.