Practice problems

Dynamic Programming
Dynamic programming (2D design)

We are given a list of n items with sizes s_1, s_2, \ldots, s_n. A sequential bin packing of these items is an assignment of items to bins, such that in each bins the items are consecutive. (That is, each bin has items $s_i, s_{i+1}, \ldots, s_j$ for some indices $i < j$.) Bins have unbounded capacities. The load of a bin is the sum of the elements in it. Give an algorithm that determines a sequential packing of n items into k bins for which the maximum load of a bin is minimized. Analyze the time-complexity and space-complexity.

Problem (shortest paths)

- Suppose that all edge weights of a weighed connected graph are either 1 or 2
- Give an $O(n+m)$-time algorithm to solve the single-source shortest-paths problem in such graphs
Single source shortest path

Dijkstra's single-source shortest-path uses a set C (the "cloud") of vertices that initially contains only the source s and that eventually includes all the vertices of the graph (V,E). Vertices are added to C one at a time, as explained in class. Let $f(v)$ the number of times that the label $D[v]$ of a vertex v in $V - C$ changes due to an edge relaxation. Answer each of the following questions (provide an intuitive explanation for each of your answers)

- Can the label $D[v]$ of a vertex v in $V - C$ ever get smaller than the cost of a shortest s-to-v path in the graph G?
- Can $f(v)$ become greater than the degree of v? (recall that the degree of a node is the number of edges incident to it)
- Can $f(v)$ be less than the degree of v?

Minimum spanning tree

Consider the Generic-MST algorithm in class and presented below.

Algorithm Generic-MST $(G : \text{weighted graph})$
1. let $A \leftarrow \emptyset$
2. while A does not form a spanning tree for G do
3. find a cut C that respects A
4. let edge (u,v) be a light edge crossing C
5. let $A \leftarrow A \cup \{(u,v)\}$
6. return A

Prove by induction on the size of A that lines 3-5 cannot introduce cycles in A. You can assume for simplicity that A is a single tree (instead of a forest). This is simple proof, but you must write all the steps to get full credit.
MST (proof)

Let $G = (V,E)$ be a weighted graph. Prove that if all edge weights in G are distinct, then G has a unique minimum spanning tree. Note: For full credit you have to give a formal proof. Arguments based on Kruskal's or Prim's algorithm will not be accepted.

Here is the beginning of the proof:

We assume all edge weights in G are distinct. For sake of contradiction, suppose that G has two minimum spanning trees T_1 and T_2. Since $T_1 \neq T_2$ they must differ in at least one edge. Let $e \ldots$