Practice problems

Analysis (recurrence relation)

Problem: Solve using the Master Theorem

\[
T(n) = \begin{cases}
1 & n = 1 \\
7T\left(\frac{n}{2}\right) + n^2 & n > 1
\end{cases}
\]

Solution: The first case applies.

\[T(n) \in \Theta\left(n^{\log_2 7}\right)\]
Analysis (recurrence relation)

Problem: Solve using the Master Theorem

\[T(n) = \begin{cases}
1 & n = 1 \\
9T\left(\frac{n}{3}\right) + n^2 \log n & n > 1
\end{cases} \]

Solution: The second case applies \((k = 1)\).

\[T(n) \in \Theta\left(n^2 \log^2 n\right) \]

Analysis (recurrence relation)

Problem: Solve using the Master Theorem

\[T(n) = \begin{cases}
1 & n = 1 \\
T\left(\frac{n}{2}\right) + n \log n & n > 1
\end{cases} \]

Solution: The third case applies.

\[T(n) \in \Theta\left(n \log n\right) \]
Divide & Conquer

D&C algorithms covered in lectures

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Recurrence</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Search</td>
<td>$T(n)=T(n/2)+O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$T(n)=2T(n/2)+O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Towers of Hanoi</td>
<td>$T(n)=2T(n-1)+O(1)$</td>
<td>$O(2^n)$</td>
</tr>
<tr>
<td>Integer Multiplication (Karatsuba)</td>
<td>$T(n)=3T(n/2)+O(n)$</td>
<td>$O(n^{\log_2 3})$</td>
</tr>
<tr>
<td>Matrix Multiplication (Strassen)</td>
<td>$T(n)=7T(n/2)+O(n^2)$</td>
<td>$O(n^{\log_2 7})$</td>
</tr>
<tr>
<td>Closest Pair</td>
<td>$T(n)=2T(n/2)+O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Selection (k-th smallest)</td>
<td>$T(n)=T(n/5)+T(7n/10+6)+O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

D&C algorithms covered in homework

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Recurrence</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge k sorted array</td>
<td>$T(k)=2T(k/2)+O(kn)$</td>
<td>$O(kn \log k)$</td>
</tr>
<tr>
<td>Majority Element</td>
<td>$T(n)=2T(n/2)+O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Polynomial Multiplication</td>
<td>$T(n)=3T(n/2)+O(n)$</td>
<td>$O(n^{\log_3 5})$</td>
</tr>
<tr>
<td>Hadamard matrices Multiplication</td>
<td>$T(n)=2T(n/2)+O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Find k-smallest of two sorted lists</td>
<td>$T(k)=T(k/2)+O(1)$</td>
<td>$O(\log k)$</td>
</tr>
<tr>
<td>Count number of exchanged pairs</td>
<td>$T(n)=2T(n/2)+O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>
Divide & Conquer ("black box")

Assume you are given the procedure \textsc{Strassen}(A, B, n) which implements Strassen algorithm. Recall that the procedure computes the product of two squared matrices A and B of size $n \times n$.

Using \textsc{Strassen}(A, B, n) as a subroutine, show how can you multiply a $kn \times n$ matrix by a $n \times kn$ matrix ($k > 1$).

Briefly describe your algorithm, and analyze its time complexity as a function of n and k.

Divide & Conquer ("black box")

Assume you are given the procedure \textsc{Strassen}(A, B, n) which implements Strassen algorithm. Recall that the procedure computes the product of two squared matrices A and B of size $n \times n$.

Using \textsc{Strassen}(A, B, n) as a subroutine, show how can you multiply a $n \times kn$ matrix by a $kn \times n$ matrix ($k > 1$).

Briefly describe your algorithm in pseudo-code, and analyze its time complexity as a function of n and k.

Stefano Lonardi, UCR
Divide & Conquer \((n \log n \) design)

Given an array \(A \) of \(n \) (possibly negative) integers, find two indices \(1 \leq i \leq n \) and \(1 \leq j \leq n \) such that the value of \(\sum_{k=i}^{j} a_k \) is maximized.

Here some examples (the solution is underlined):

- \(A = [−2, 11, −4, 13, −5, 2] \) which has answer \(20 \),
- \(A = [1, −3, 4, −2, −1, 6] \) which has answer \(7 \),
- \(A = [−1, 4, −3, 5, −2, −1, 2, 6, −21] \) which has answer \(11 \).

Write an \(O(n \log n) \) time algorithm for the problem described above. The algorithm should return \(i \) and \(j \). If all elements of the array are negative, the algorithm should return \(i = j = 0 \).