Divide and Conquer

Chapter 2 of Dasgupta et al.

Divide and Conquer

• Divide: If the input size is too large to deal with in a straightforward manner, divide the data into two or more disjoint subsets
• Recur: Use divide and conquer to solve the sub-problems associated with the data subsets
• Conquer: Take the solutions to the sub-problems and “merge” these solutions into a solution for the original problem
Divide and Conquer

Outline

- Already covered/known
 - Sorting: Mergesort
 - Searching: Binary Search
- Integer Multiplication (Karatsuba)
- Matrix Multiplication (Strassen)
- Closest Pair
- Linear-time selection
Integer multiplication (Karatsuba)

Integer multiplication

- Given positive integers y, z, compute $x = y \times z$
- A naïve multiplication algorithm is below

```python
def naive_mul(y, z):
    x = 0
    while z > 0:
        if z % 2 == 1:
            x += y
        y *= 2
    return x
```
Integer multiplication

Addition takes $O(n)$ bit operations, where n is the number of bits in y and z. The naive multiplication algorithm takes $O(n)$ n-bit additions. Therefore, the naive multiplication algorithm takes $O(n^2)$ bit operations.

Can we multiply using fewer bit operations?

Integer multiplication

Suppose n is a power of 2. Divide y and z into two halves, each with $n/2$ bits.

\[
\begin{array}{c|c|c}
 y & a & b \\
\hline
 z & c & d \\
\end{array}
\]
Integer multiplication

Then

\[y = a2^{n/2} + b \]
\[z = c2^{n/2} + d \]

and so

\[yz = (a2^{n/2} + b)(c2^{n/2} + d) \]
\[= ac2^n + (ad + bc)2^{n/2} + bd \]

This computes \(yz \) with 4 multiplications of \(n/2 \) bit numbers, and some additions and shifts. Running time given by \(T(1) = c \), \(T(n) = 4T(n/2) + dn \), which has solution \(O(n^2) \) by the General Theorem. No gain over naive algorithm!

Example 5.7: Consider the recurrence

\[T(n) = 4T(n/2) + n. \]

In this case, \(n^{log_2 4} = n^2 \). Thus, we are in Case 1, for \(f(n) \) is \(O(n^{2-\varepsilon}) \) for \(\varepsilon = 1 \). This means that \(T(n) \) is \(\Theta(n^2) \) by the master method.
Integer multiplication (Karatsuba algorithm)

- Consider the product
 \[(a-b)(d-c) = (ad + bc) - (ac + bd)\]
- It contains two of the products we need \((ad\) and \(bc\))
- Then
 \[yz = ac2^n + [(a-b)(d-c) + (ac+bd)]2^{n/2} + bd\]
- We need three multiplications of \(n/2\) bits and \(O(n)\) additional work

Therefore,

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 3T(n/2) + dn & \text{otherwise}
\end{cases}
\]

where \(c, d\) are constants.

Therefore, by our general theorem, the divide and conquer multiplication algorithm uses

\[T(n) = O(n^{\log_3 3}) = O(n^{1.59})\]

bit operations.
Karatsuba algorithm

```python
def multiply(y, z):
    l = max(len(y), len(z))
    if l == 1:
        return [y[0] * z[0]]
    y = [0 for i in range(len(y), l)] + y;
    z = [0 for i in range(len(z), l)] + z;
    m0 = (l + 1) / 2
    a = y[:m0]
    b = y[m0:]
    c = z[:m0]
    d = z[m0:]
    Remark: pad y and z so that they have the same length
    p0 = multiply(a, c)
    p1 = multiply(add(a, b), add(c, d))
    p2 = multiply(b, d)
    z0 = p0
    z1 = subtract(p1, add(p0, p2))
    z2 = p2
    Remark: compute
    z1 = p1 - p0 - p2
    Remark: compute
    z0 b^l + z1 b^(l/2) + z2
    z0prod = z0 + [0 for i in range(0, l)]
    z1prod = z1 + [0 for i in range(0, l / 2)]
    return add(add(z0prod, z1prod), z2)
```

Karatsuba algorithm (continued)

Remark: compute
z1 = p1 - p0 - p2
Remark: compute
z0 b^l + z1 b^(l/2) + z2
Matrix multiplication (Strassen)

Problem: Given two matrices Y and Z compute $X = Y \ast Z$
Matrix multiplication

```python
def mult(Y, Z):
    X = zero(len(Y), len(Z[0]))
    for i in range(len(Y)):
        for j in range(len(Z[0])):
            for k in range(len(Z)):
                X[i][j] += Y[i][k] * Z[k][j]
    return X
```

Algorithm `mult(Y, Z)` is $O(n^3)$, can we do better?

Matrix multiplication

Divide X, Y, Z each into four $(n/2) \times (n/2)$ matrices.

\[
X = \begin{bmatrix}
I & J \\
K & L
\end{bmatrix}
\]

\[
Y = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\]

\[
Z = \begin{bmatrix}
E & F \\
G & H
\end{bmatrix}
\]
Matrix multiplication

Then

\[
\begin{align*}
I &= AE + BG \\
J &= AF + BI \\
K &= CE + DG \\
L &= CF + DH
\end{align*}
\]

Matrix multiplication

Let \(T(n) \) be the time to multiply two \(n \times n \) matrices.

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 8T(n/2) + dn^2 & \text{otherwise}
\end{cases}
\]

where \(c, d \) are constants.
Matrix multiplication

Therefore,

\[T(n) = 8T(n/2) + dn^2 \]
\[= 8(8T(n/4) + d(n/2)^2) + dn^2 \]
\[= 8^2T(n/4) + 2dn^2 + dn^2 \]
\[= 8^3T(n/8) + 4dn^2 + 2dn^2 + dn^2 \]
\[= 8^iT(n/2^i) + dn^2 \sum_{j=0}^{i-1} 2^j \]
\[= 8^{\log n}T(1) + dn^2 \sum_{j=0}^{\log n-1} 2^j \]
\[= cn^3 + dn^2(n - 1) \]
\[= O(n^3) \]

Master Thorem case 1:

\[f(n) \in O(n^{\log_2 8 - \varepsilon})? \]
\[dn^2 \in O(n^{3-\varepsilon})? \text{ true for } \varepsilon=1 \]

Then \(T(n) \in \Theta(n^3) \)

--

Matrix multiplication

- The naïve Divide and Conquer algorithm is no better than the straightforward algorithm
- However, it gives us an insight on the next algorithm
- Strassen’s algorithm uses only 7 multiplications instead of 8
Strassen algorithm

Compute

\[
\begin{align*}
M_1 &:= (A + C)(E + F) \\
M_2 &:= (B + D)(G + H) \\
M_3 &:= (A - D)(E + H) \\
M_4 &:= A(F - H) \\
M_5 &:= (C + D)E \\
M_6 &:= (A + B)H \\
M_7 &:= D(G - E)
\end{align*}
\]

Strassen algorithm

Then,

\[
\begin{align*}
I &:= M_2 + M_3 - M_6 - M_7 \\
J &:= M_4 + M_6 \\
K &:= M_5 + M_7 \\
L &:= M_1 - M_3 - M_4 - M_5
\end{align*}
\]
Strassen algorithm

\[I \ := \ M_2 + M_3 - M_6 - M_7 \]
\[= \ (B + D)(G + H) + (A - D)(E + H) \]
\[- (A + B)H - D(G - E) \]
\[= \ (BG + BH + DG + DH) \]
\[+ (AE + AH - DE - DH) \]
\[+ (-AH - BH) + (-DG + DE) \]
\[= \ BG + AE \]

Strassen algorithm

\[J \ := \ M_4 + M_6 \]
\[= \ A(F - H) + (A + B)H \]
\[= \ AF - AH + AH + BH \]
\[= \ AF + BH \]
Strassen algorithm

\[K := M_5 + M_7 \]
\[= (C + D)E + D(G - E) \]
\[= CE + DE + DG - DE \]
\[= CE + DG \]

Strassen algorithm

\[L := M_1 - M_3 - M_4 - M_5 \]
\[= (A + C)(E + F) - (A - D)(E + H) \]
\[- A(F - H) - (C + D)E \]
\[= AE + AF + CE + CF - AE - AH \]
\[+ DE + DH - AF + AH - CE - DE \]
\[= CF + DH \]
def strassen(Y,Z):
 if len(Y) <= 2:
 return mult(Y,Z)
 else:
 A,B,C,D = partition(Y)
 E,F,G,H = partition(Z)
 M1 = strassen(add(A,C),add(E,F))
 M2 = strassen(add(B,D),add(G,H))
 M3 = strassen(sub(A,D),add(E,H))
 M4 = strassen(A,sub(F,H))
 M5 = strassen(add(C,D),E)
 M6 = strassen(add(A,B),H)
 M7 = strassen(D,sub(G,E))
 I = sub(sub(add(M2,M3),M6),M7)
 J = add(M4,M6)
 K = add(M5,M7)
 L = sub(sub(sub(M1,M3),M4),M5)
 return recompose(I,J,K,L)

Analysis of Strassen algorithm

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 7T(n/2) + dn^2 & \text{otherwise}
\end{cases}
\]

where \(c, d\) are constants.
Analysis of Strassen algorithm

\[T(n) = 7T(n/2) + dn^2 \]
\[= 7(7T(n/4) + d(n/2)^2) + dn^2 \]
\[= 7^2T(n/4) + 7dn^2/4 + dn^2 \]
\[= 7^3T(n/8) + 7^2dn^2/4^2 + 7dn^2/4 + dn^2 \]
\[= 7^iT(n/2^i) + dn^2 \sum_{j=0}^{i-1} (7/4)^j \]
\[= 7^{\log_2 n}T(1) + dn^2 \log_2 n \sum_{j=0}^{n-1} (7/4)^j \]
\[= cn\log^7 n + dn^2(7/4)^{\log_2 n} - 1 \]
\[= cn\log^7 n + \frac{4}{3}dn^2(\frac{\log^7 n}{n^2} - 1) \]
\[= O(n\log^7 n) \approx O(n^{2.8}) \]

Master Thorem case 1:

\[f(n) \in O(n^{\log_2 7 - \varepsilon})? \]
\[dn^2 \in O(n^{2.8 - \varepsilon})? \text{ true for } \varepsilon = 0.5 \]

Then \(T(n) \in \Theta(n^{\log_2 7}) \)

Discussion

- There is a large constant hidden which makes Strassen impractical, unless the matrices are large \((n > 45)\) and dense
- For sparse matrices there are faster methods
- Strassen is not as *numerically stable* as the naïve
- Sub-matrices at each level consume space
- FYI: the current best algorithm for dense matrices runs in \(O(n^{2.376}) \)
- Lower bound \(\Omega(n^2) \) [for dense matrices]
Closest Pair

Closest Pair Problem

• Let \(P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n) \) be a set \(S \) of \(n \) points in the plane

• **Problem:** Find the two closest points in \(S \)

• **Assumptions:**
 – \(n \) is a power of two
 – Points are ordered by their \(x \) coordinate (if not, we can sort them in \(O(n \log n) \) time)
Closest-Pair Problem: Brute-force

- Compute the distance between every pair of distinct points
- Return the indexes of the points for which the distance is the smallest

Time complexity?

Closest-Pair: Divide and Conquer

Step 1. Divide the points in S into two subsets S_1 and S_2 by a vertical line $x = c$ so that half the points lie to the left or on the line and half the points lie to the right or on the line (c is the median of the x coord)
Closest-Pair: Divide and Conquer

Step 2. Find recursively the closest pairs for the left and right subsets. Let d_1, d_2 be the distances of the two closest pairs.
Set $d = \min\{d_1, d_2\}$

Closest Pair: Divide and Conquer

Step 3. Consider the vertical strip $2d$-wide centered at $x=c$. Let Y be the subset of points in this vertical strip of width $2d$
Closest Pair: Divide and Conquer

• **Observation 1:** if a pair of points p_L, p_R has distance less than d, both points of the pair **must** be within Y

Closest Pair: Divide and Conquer

Observation 2: Since all the points within S_I are at least d units apart, at most 4 points can reside within the $d \times d$ square
Closest Pair: Divide and Conquer

Proof: Let’s suppose (for sake of contradiction) that five or more points are found in a square of size $d \times d$. Divide the square into four smaller squares of size $d/2 \times d/2$. At least one pair of points must fall within the same smaller square: these two points will be at a distance $d/\sqrt{2} < d$, which leads to a contradiction.

Consequence: At most 8 points can reside within the $d \times 2d$ rectangle, because on each side all points are at least d unit apart.

![Diagram of a square divided into four smaller squares with coincident points labeled.](image-url)
Closest Pair: Divide and Conquer

Step 4. For each point \(p \) in \(Y \), try to find points in \(Y \) that are within \(d \) units of \(p \). Only 7 points in \(Y \) that follow \(p \) need to be considered.

![Diagram showing points and distances](image)

Closest pair in Python

```python
def closestPair(xP, yP):
    n = len(xP)
    if n <= 3:
        return bruteForceClosestPair(xP)
    Xl = xP[:n//2]
    Xr = xP[n//2:]
    Yl, Yr = [], []
    median = Xl[-1].x
    for p in yP:
        if p.x <= median:
            Yl.append(p)
        else:
            Yr.append(p)
```

Remark: \(xP \) and \(yP \) is the same of input points \((x, y)\), but \(xP \) is sorted by \(x \) and \(yP \) is sorted by \(y \).

Remark: \(Xl \) is the first half of the points sorted by \(x \), and \(Xr \) is the second half.

Remark: \(Yl \) contains the points (sorted by \(y \)) which have a \(x \) coordinate smaller than the median.
dl, pairl = closestPair(Xl, Yl)
dr, pairr = closestPair(Xr, Yr)
dm, pairm = (dl, pairl) if dl < dr else (dr, pairr)

st = [p for p in yP if abs(p.x - median) < dm]
n_st = len(st)
closest = (dm, pairm)
if n_st > 1:
 for i in range(n_st-1):
 for j in range(i+1,min(i+8, n_st)):
 if d(st[i],st[j]) < closest[0]:
 closest = (d(st[i],st[j]),(st[i],st[j]))
return closest

Analysis of the Closest-Pair Algorithm

- We can keep the points in Y stored in increasing order of their y coordinates, which is maintained by merging during the execution of step 4
- We can process the points in Y sequentially in linear time
- Running time is described by $T(n) = 2T(n/2) + O(n)$
- By the Master Theorem, $T(n)$ is $O(n \log n)$
Linear-time selection

- **Problem**: Select the i-th smallest element in an unsorted array of size n (assume distinct elements)
- **Trivial solution**: sort A, select $A[i]$ time complexity is $O(n \log n)$

- Can we do it in linear time? Yes, thanks to Blum, Floyd, Pratt, Rivest, and Tarjan
Linear-time selection

Select \((A, \text{start}, \text{end}, i)\)
/* \(i\) is the \(i\)-th order statistic */

1. divide input array \(A\) into \([n/5]\) groups of size 5
 (and one leftover group if \(n \% 5\) is not 0)
2. find the median of each group of size 5 by sorting
 the groups of 5 and then picking the middle element
3. call **Select** recursively to find \(x\), the median of the \([n/5]\)
 medians
4. partition array around \(x\), splitting it into two arrays
 \(L\) (elements smaller than \(x\)) and \(R\) (elements bigger than \(x\))
5. \(k \Leftarrow |L| + 1\)
 if \((i = k)\) then return \(x\)
 else if \((i < k)\) then **Select** \((L, i)\)
 else **Select** \((R, i - k)\)

[r] means the ceiling (rounding to the next integer) of real number \(r\)

Python linear-time selection

```python
def selection(a, rank):
    n = len(a)
    if n <= 5:
        return rank_by_sorting(a, rank)
    medians = [rank_by_sorting(a[i:i+5], 3)  
               for i in range(0, n-4, 5)]
    median = selection(medians, (len(medians) + 1) // 2)
    L, R = [], []
    for x in a:
        if x < median:
            L += [x]
        else:
            R += [x]
    if rank <= len(L):
        return selection(L, rank)
    else:
        return selection(R, rank - len(L))
```
Example

Let us run Select(A, 1, 28, 11), where

A={12, 34, 0, 3, 22, 4, 17, 32, 3, 28, 43, 82, 25, 27, 34, 2, 19, 12, 5, 18, 20, 33, 16, 33, 21, 30, 3, 47}

Note that the elements in this example are not distinct.

Example

First make groups of 5

<table>
<thead>
<tr>
<th>12</th>
<th>4</th>
<th>43</th>
<th>2</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>17</td>
<td>82</td>
<td>19</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>25</td>
<td>12</td>
<td>16</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>34</td>
<td>18</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>
Example

Then find medians in each group

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>25</td>
<td>2</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>34</td>
<td>12</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>34</td>
<td>32</td>
<td>43</td>
<td>19</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>82</td>
<td>18</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Example

Then find median of medians

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>25</td>
<td>2</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>34</td>
<td>12</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>34</td>
<td>32</td>
<td>43</td>
<td>19</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>82</td>
<td>18</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

12, 12, 17, 21, 30, 34
Example

Use 17 as the pivot value and partition original array

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>25</th>
<th>2</th>
<th>20</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>34</td>
<td>12</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>34</td>
<td>32</td>
<td>43</td>
<td>19</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>82</td>
<td>18</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

12, 12, 17, 21, 30, 34

Example

After partitioning

$L = \{12, 0, 3, 4, 3, 2, 12, 5, 16, 3\}$

L contains 10 elements smaller than 17

$\{17\}$ this is the 11-th smallest

$R = \{34, 22, 32, 28, 43, 82, 25, 27, 34, 19, 18, 20, 33, 33, 21, 30, 47\}$

R contains 17 elements bigger than 17
Linear-time selection

• Finding the median of medians guarantees that x causes a “good split”
• At least a constant fraction of the n elements $\leq x$ and a constant fraction $> x$
• Analysis: we need to find the worst case for the size of L and R

Linear-time selection: analysis

Observation: At least 1/2 of the medians found in step 2 are greater than the median of medians x. So at least half of the $\lceil n/5 \rceil$ groups contribute 3 elements that are bigger than x, except for the one group with less than 5 elements and the group with x itself
Linear-time selection: analysis

- Therefore there are
 \[3([1/2 \lfloor n/5 \rfloor] - 2) \geq (3n/10) - 6\]
 elements are \(> x \) (or \(< x \))
- So worst-case split has at most \((7n/10) + 6\) elements in “big” section of the problem, that is:
 \[\max\{|L|, |R|\} < (7n/10) + 6\]

Linear-time selection: analysis

Running Time:
1. \(O(n)\) (break into groups of 5)
2. \(O(n)\) (sorting 5 numbers and finding median is \(O(1)\) time)
3. \(T([n/5])\) (recursive call to find median of medians)
4. \(O(n)\) (partition is linear time)
5. \(T(7n/10 + 6)\) (maximum size of subproblem)

Recurrence relation
\[
T(n) = T([n/5]) + T(7n/10 + 6) + O(n) \quad n > 80
= \Theta(1) \quad n \leq 80
\]
Linear-time selection: analysis

Fact: \(T(n) = T(\lfloor n/5 \rfloor) + T(7n/10 + 6) + O(n) \) is \(O(n) \)

Proof:

Base case: easy (omitted).

\[
T(n) = T(\lfloor n/5 \rfloor) + T(7n/10 + 6) + O(n)
\leq c\lfloor n/5 \rfloor + c(7n/10 + 6) + O(n)
\leq c(n/5 + 1) + 7cn/10 + 6c + O(n)
= cn - [c(n/10 - 7) - dn]
\leq cn
\]

This step holds since \(n \geq 80 \) implies \((n/10 - 7) \) is positive.

Choosing \(c \) big enough makes \(c(n/10 - 7) - dn \) positive, so last line holds.

Reading assignment on Chapter 4

- Mergesort (section 2.3)
- Binary Search (page 50, box)
- Integer Multiplication (Karatsuba, section 2.1)
- Matrix Multiplication (Strassen, section 2.5)
- Closest pair (problem 2.32)
- Medians (section 2.4 covers randomized)
- Skip FFT