Data Structures and Algorithms

CS141, Fall 2017

Instructor

- Stefano Lonardi
 - Office: WCH 325
 - Phone: (951) 827-2203
 - Email: stelo@cs.ucr.edu

- Office hours: Fridays 10-11am or by appointment
• Course homepage
 – http://www.cs.ucr.edu/~stelo/cs141fall17/
 – Syllabus, slides, homework & solutions
• iLearn for grades
 – https://ilearn.ucr.edu/
• Piazza discussion board
 – https://piazza.com/ucr/fall2017/cs141/
 (link from the course homepage)
• Gradescope to submit homework
 – https://gradescope.com/
 – Entry Code: MZR34G

Textbook (required)

Reference

Discussion Sessions and TA

- Wednesday 8-9am, Olmstead 1136 Dipankar
- Wednesday 10-11am, MSE 113 Dipankar
- Monday 9-10am, LifeSci 2418 Dipankar

- Attendance of discussion sessions is not mandatory but strongly **recommended**
- Office hours held in WCH room 110, Tuesday 3-5pm
- Discussions start next week
Course Format

- Three 50-minute lectures/week
- One hour discussion/week
- Nine written assignments (homework); homework with the lowest score (out of 9) will be dropped from the average
- Three exams (in class, closed book/notes)
 - Two quizzes (week 6 and week 9)
 - One final (during finals’ week)

Grading

- Best 8 homework \((h)\) – 20%
- Quiz 1 \((q_1)\) – 20%
- Quiz 2 \((q_2)\) – 20%
- Final \((f)\) – 40%

Given the scores \(h,q_1,q_2,f \in [0,100]\)

\[
G = \frac{20h + 20q_1 + 20q_2 + 40f}{100}
\]

Map \(G\) to the final grade using the following table.
Overview

- Week 1: Course overview
- Week 2: Discrete math for algorithm analysis
- Week 3: Analysis of recurrence relations
- Week 4: Divide and conquer
- Week 5: Greedy approach
- **QUIZ 1** (in class, closed book, closed notes)
- Week 6: Dynamic programming
- Week 7: Graphs, directed graphs and weighted graphs
- Week 8: Graph traversal (DFS/BFS), connectivity
- **QUIZ 2** (in class, closed book, closed notes)
- Week 9: Minimum cost spanning tree, single-source shortest path
- Week 10: All-pairs shortest path
- **FINAL** (closed book, closed notes)

Fall 2017 Calendar

<table>
<thead>
<tr>
<th>M</th>
<th>T</th>
<th>W</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (hw1 posted)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9 (hw1 due)</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>16 (hw2 due)</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>23 (hw3 due)</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>30 (hw4 due)</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6 (hw5 due)</td>
<td>7</td>
<td>8 (quiz 1)</td>
<td>9</td>
<td>10 VD</td>
</tr>
<tr>
<td>13 (hw6 due)</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>20 (hw7 due)</td>
<td>21</td>
<td>22</td>
<td>23 TG</td>
<td>24 TG</td>
</tr>
<tr>
<td>27 (hw8 due)</td>
<td>28</td>
<td>29 (quiz 2)</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>4 (hw9 due)</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>11 Final 7-10pm</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
CS 141

CS 14 Background

- **Data Structures**: Arrays, Lists, Stacks, Queues, Dictionaries, Hash Tables, Search Trees, Priority Queues (heaps), Graphs

- **Algorithms**: Sorting, Searching

CS 111 Background

- Asymptotic notation (upper, lower, tight bounds)
- Proofs (direct, contradiction, induction)
- Solving recurrence relations
- Trees, graphs and directed graphs