Greedy

Chapters 5 of Dasgupta et al.

Outline

• Activity selection
• Fractional knapsack
• Huffman encoding
• Later:
 – Dijkstra (single source shortest path)
 – Prim and Kruskal (minimum spanning tree)
Optimization problems

- A class of problems in which we are asked to find a set (or a sequence) of “items” that satisfy some constraints and simultaneously optimize (i.e., maximize or minimize) some objective function

Greedy method

- Typically applied to optimization problems, that is, problems that involve searching through a set of configurations to find one that minimizes/maximizes an objective function defined on these configuration
- Greedy strategy: at each step of the optimization procedure, choose the configuration which seems the best between all of those possible
Searching for the global minimum

![Graph showing objective function against configurations]

a series of locally optimal moves may NOT lead to the global optimal

Greedy method

- There are problems for which the globally optimal solution can be found by making a series of locally optimal (greedy) choices
 - Make whatever choice seems best at the moment and then solve the sub-problem arising after the choice is made
 - The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to sub-problems
- The greedy strategy does not always lead to the global optimal solution
Searching for the global minimum

Elements of greedy strategy

- Two ingredients that are exhibited by most problems that lend themselves to a greedy strategy
 - Greedy-choice property: a globally optimal solution can be reached by making a locally optimal choice
 - Optimal substructure: optimal solution to the problem consists of optimal solutions to sub-problems
Activity selection

(aka, “task scheduling”)

Activity Selection

• **Input**: A set of activities \(S = \{a_1, \ldots, a_n\} \)
• Each activity has start time and a finish time \(a_i=(s_i,f_i) \)
• Two activities are *conflicting* if and only if their interval overlap
• **Output**: a maximum-size subset of non-conflicting activities
Activity Selection

• Here are a set of start and finish times

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>si</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>fi</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

• What is the maximum number of activities that can be completed?
 – \{a_3, a_9, a_{11}\} can be completed
 – But so can \{a_1, a_4, a_8, a_{11}\} which is a larger set
 – But it is not unique, consider \{a_2, a_4, a_9, a_{11}\}
“Greedy” Strategies

1. Longest first
2. Shortest first
3. Early start first
4. Early finish first
5. None of the above
Early Finish Greedy strategy

- Sort the activities by finish time
- Schedule the first activity
- Then, schedule the next activity (in sorted list) which starts after previous activity finishes (first non-conflicting task)
- Repeat until no more activities
Activity selection in Python

```python
def greedy_activity_selection(A):
    A.sort(key=itemgetter(1))  # Remark: sort A by finish time
    result = [A[0]]  # Remark: first activity in the solution
    i = 0
    for j in range(1, len(A)):
        if A[j][0] >= A[i][1]:  # Remark: start[j] >= finish[i]
            result.append(A[j])
            i = j
    return result
```

Time complexity? $O(n \log n)$ to sort, the rest is linear.

Why it is Greedy?

- Greedy in the sense that it leaves as much opportunity as possible for the remaining activities to be scheduled

- The greedy choice is the one that maximizes the amount of unscheduled time remaining
Correctness (optimality)

• We will show that
 • the problem has the optimal substructure property
 • the algorithm satisfies the greedy-choice property
• Thus, the algorithm always finds the optimal solution

Greedy-Choice Property

• We want to show there is an optimal solution that begins with a greedy choice (i.e., with the first activity, which has the earliest finish time)
Greedy-Choice Property

- Suppose $A \subseteq S$ is an optimal solution
 - Order the activities in A by finish time
 Let k be the first activity in A
 - If $k = 1$, the schedule A begins with a greedy choice
 - If $k \neq 1$, show that there is another optimal solution B that begins with the greedy choice (activity 1)
 - Let $B = A - \{k\} \cup \{1\}$
 - Activities in B are non-conflicting because activities in A are non-conflicting, k is the first activity to finish and $f_i \leq f_k$
 - B has the same number of activities as A thus, B is optimal

Optimal Substructure

- Once the greedy choice of the first activity is made, the problem reduces to finding an optimal solution for the activity-selection problem over those activities in S that are compatible with the first activity
 - Optimal Substructure: if A is optimal to S, then $A' = A - \{1\}$ is optimal to $S' = \{i \text{ in } S: s_i \geq f_j\}$
 - Why? If we could find a solution B' to S' with more activities than A', adding activity 1 to B' would yield a solution B to S with more activities than A contradicting the optimality of A
Optimal Substructure

• After each greedy choice is made, we are left with an optimization problem of the same form as the original problem.

• By induction on the number of choices made, making the greedy choice at every step produces an optimal solution.

Fractional Knapsack
Fractional Knapsack

- Given a set S of n items, such that each item i has a positive benefit b_i and a positive weight w_i; the size of the knapsack W
- The problem is to find the amount x_i of each item i which maximizes the total benefit
 \[\sum_i b_i \left(\frac{x_i}{w_i} \right) \]
 under the condition that $0 \leq x_i \leq w_i$ and \[\sum_i x_i \leq W \]

Fractional Knapsack - Example
Fractional Knapsack in Python

```python
def fractional_knapsack(S, W):
    v = []
    for item in S:
        value = float(item[1]) / float(item[0])
        v.append((value, item[1], item[2]))
    v.sort(key=itemgetter(0))
    w, result = 0, []
    while w < W:
        high = v[-1]
        v.pop()
        a = min(high[1], W-w)
        w += a
        result.append((a, high[2]))
    return result
```

Fractional Knapsack

- Time complexity is $O(n \log n)$
- **Fact**: Greedy strategy is optimal for the fractional knapsack problem
- **Proof**: We will show that the problem has the optimal substructure and the algorithm satisfies the greedy-choice property
Greedy Choice

Items (sorted by b_i/w_i) 1 2 3 ... j ... n

"Optimal" solution: x_1 x_2 x_3 ... x_j ... x_n

Greedy solution: x_1' x_2' x_3' ... x_j' ... x_n'

- We want to prove that taking as much as possible from item j is optimal
- Let us assume that is not the case, and in the optimal solution $x_1 < x_1'$
- Because we taking more of item j in the greedy solution, we have to decrease the quantity taken of some other item j
- Therefore, in the greedy solution x_j is decreased by $(x_1' - x_1)$
- In the greedy solution, we gain $\frac{(x_1' - x_1)}{w_1}$ and we lose $\frac{(x_1' - x_1)}{w_j}$

$$\frac{b_1}{w_1} \geq \frac{b_j}{w_j}$$

True, since x_j had the best benefit/weight ratio

Optimal substructure

Items: 1 2 3 ... j ... n

Solution U: x_1 x_2 x_3 ... x_j ... x_n

Solution U': 0 x_2' x_3' ... x_j' ... x_n'

- (S,W) is the original problem, assume U is optimal for (S,W)
- S' is the sub-problem \{2,3,...,n\}
- Prove that U' is optimal for $(S',W-x_j)$ where $x_i' = x_i$ for all $i > 1$
- By contradiction: if U'' was not optimal, then U''' exists such that

$$\sum_{2 \leq i \leq n} x_i'(b_i/w_i) > \sum_{2 \leq i \leq n} x_i(b_i/w_i)$$

But

$$\sum_{1 \leq i \leq n} x_i(b_i/w_i) = \sum_{2 \leq i \leq n} x_i'(b_i/w_i) + x_1(b_1/w_1) + x_i(b_i/w_i) < \sum_{2 \leq i \leq n} x_i'(b_i/w_i) + x_1(b_1/w_1)$$

which means that U was not optimal for $(S,W) \rightarrow$ contradiction
Huffman codes

Data Compression

- Text files are usually stored by representing each character with an 8-bit ASCII code.
- The ASCII encoding is an example of fixed-length encoding, where each character is represented with the same number of bits.
- In order to reduce the space required to store a text file, we can exploit the fact that some characters are more likely to occur than others.
Data Compression

- **Variable-length** encoding uses binary codes of different lengths for different characters; thus, we can assign fewer bits to frequently used characters, and more bits to rarely used characters

- Huffman coding (section 5.2)

File Compression: Example

- An example
 - text: “java”
 - encoding: a = “0”, j = “11”, v = “10”
 - encoded text: 110100 (6 bits)

- How to decode in the case of ambiguity?
 - encoding: a = “0”, j = “11”, v = “00”
 - encoded text: 110000 (6 bits)
 - could be “java”, or “jvv”, or “jaaaa”, or …
Encoding

- To prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule: no code is a prefix of another.

- Example
 - a = “0”, j = “11”, v = “10” satisfies the prefix rule.
 - a = “0”, j = “11”, v = “00” does not satisfy the prefix rule (the code of 'a' is a prefix of the codes of 'v').

Trie

- We use an encoding trie to satisfy this prefix rule.
 - The characters are stored at the external nodes.
 - A left child (edge) means 0.
 - A right child (edge) means 1.
Example of Decoding

- encoded text: 01011011010000101001011011010
- text: ABRACADABRA (11 bytes = 88 bits)

Data Compression

- **Problem**: We want the encoded text as short as possible
- **Example**: ABRACADABRA 01011011010000101001011011010 29 bits
Data Compression

- Example 2: ABRACADABRA

00101100010001100101100 24 bits

![Binary tree diagram]

Optimization problem

- Given a character \(c \) in the alphabet \(\Sigma \)
 - let \(f(c) \) be the frequency of \(c \) in the file
 - let \(d_T(c) \) be the depth of \(c \) in the tree = the length of the codeword

- We want to minimize the number of bits required to encode the file, that is

\[
\min_{\text{binary trees } T \text{ with } |\Sigma| \text{ leaves}} \sum_{c \in \Sigma} f(c)d_T(c)
\]
Huffman Encoding: Example

Step 0

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
</tbody>
</table>

Step 1

Step 2

Step 3
Huffman Encoding: Example

Step 4

Step 5

Final Huffman Trie

A B R A C A D A B R A
0 100 101 0 110 0 111 0 100 101 0 (23 bits)
Another Example

<table>
<thead>
<tr>
<th>Step 0</th>
<th>ABRACADABRA character frequency</th>
<th>A</th>
<th>B</th>
<th>R</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Step 1

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Step 2

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th>--------</th>
<th>------</th>
<th>------</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Another Example

<table>
<thead>
<tr>
<th>Step 3</th>
<th></th>
<th>--------</th>
<th>------</th>
<th>------</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Step 4

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th>--------</th>
<th>------</th>
<th>------</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Another Example

Step 5

Step 6

Final Trie

A B R A C A D A B R A
0 10 110 0 1110 0 1111 0 10 110 0 (23 bits)
Priority queue

- Use a priority queue for storing the nodes
- Priority queue is a queue ordered by priority (heap)
- For our application, priority = frequency
- If there are k elements in the queue:
 - Extracting the lowest priority is $O(\log k)$
 - Inserting takes $O(\log k)$

Huffman algorithm in Python

```python
def makeHuffTree(t):
    heapq.heapify(t)  # Remark: transforms list t in a heap in linear time
    while len(t) > 1:
        L, R = heapq.heappop(t), heapq.heappop(t)
        parent = (L[0] + R[0], L, R)
        heapq.heappush(t, parent)
    return t[0]  # Remark: returns the tree represented a nested tuple

def printHuffTree(t, prefix = ''):
    if len(t) == 2:
        print t[1], prefix
    else:
        printHuffTree(t[1], prefix + '0')
        printHuffTree(t[2], prefix + '1')
```

Remark: transforms list t in a heap in linear time
Remark: returns the tree represented a nested tuple
Huffman Algorithm

• Running time for a text of length n with k distinct characters: $O(n + k \log k)$
• If we assume k to be a constant (i.e., not a function of n) then the algorithm runs in $O(n)$ time
• Fact: Using a Huffman encoding trie, the encoded text has minimal length
• Proof: omitted

Greedy method: summary

• Task scheduling
• Fractional knapsack
• Huffman encoding (section 5.2)
• Other greedy algorithms that will be covered later: Prim (section 5.1.5), Kruskal (section 5.1.3) and Dijkstra (section 4.4)