Analysis of Algorithms: Issues

- Correctness/Optimality
- Running time ("time complexity")
- Memory requirements ("space complexity")
- Power
- I/O utilization
- Ease of implementation
- …
Average Case vs. Worst Case

- An algorithm may run faster on certain data sets than on others (e.g., for the sorting problem, the input is partially sorted)

- Finding the average case can be very difficult, so typically algorithms are measured by the worst case time complexity

Average Case vs. Worst Case

- In certain application domains (e.g., air traffic control, surgery, IP lookup) knowing the worst case time complexity is crucial
Worst Case Time-Complexity

• Definition: The worst case time-complexity of an algorithm A is the asymptotic running time of A as a function of the size of the input, when the input is the one that makes the algorithm slower in the limit

• How do we measure the running time of an algorithm?

Python (the language)

• We will use python code to describe algorithms (sometime mixed w English)

• Python is
 – High-level (easy to use and learn)
 – Object-oriented
 – Interpreted (but can be compiled)
 – Portable
 – Powerful
 – Free and Open Source
Python: an example

- Algorithm for finding the maximum element of an array

```python
def iMax(A):
    currentMax = A[0]
    for i in range(1, len(A)):
        if currentMax < A[i]:
            currentMax = A[i]
    return currentMax
```

... more python-ish

- Algorithm for finding the maximum element of an array

```python
def iMax(A):
    currentMax = A[0]
    for x in A[1:]:
        if currentMax < x:
            currentMax = x
    return currentMax
```
Analysis of Algorithms

- **Primitive Operations**: Low-level computations independent from the programming language can be identified in pseudo-code

- **Examples**:
 - calling a method and returning from a method
 - arithmetic operations (e.g., addition)
 - comparing two numbers, etc.

- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm

Input size and basic operation examples

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input size measure</th>
<th>Basic operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching for key in a list of n items</td>
<td>Number of items in the list, i.e., n</td>
<td>Key comparison</td>
</tr>
<tr>
<td>Multiplication of two matrices</td>
<td>Matrix dimensions or total number of elements</td>
<td>Multiplication of two numbers</td>
</tr>
<tr>
<td>Checking primality of a given integer n</td>
<td>size of $n = \text{number of digits}$ (in binary representation)</td>
<td>Division</td>
</tr>
<tr>
<td>Typical graph problem</td>
<td>#vertices and/or #edges</td>
<td>Visiting a vertex or traversing an edge</td>
</tr>
</tbody>
</table>
Example (Max iterative)

```
def iMax(A):
    currentMax = A[0]
    for i in range(len(A)):
        if currentMax < A[i]:
            currentMax = A[i]
    return currentMax
```

The program executes $n-1$ comparisons (irrespective from the type of input) where $n=\text{len}(A)$ therefore the worst case time-complexity is $O(n)$

Example (Max recursive)

```
def rMax(A):
    if len(A) == 1:
        return A[0]
    return max(rMax(A[1:]), A[0])
```

The program executes $n-1$ comparisons (irrespective from the type of input) therefore the worst case time-complexity is $O(n)$
Asymptotic notation

Section 0.3 of the textbook

The “Big-Oh” Notation

• **Definition**: Given functions \(f(n) \) and \(g(n) \), we say that \(f(n) \) is \(O(g(n)) \) if and only if

\[
\text{there are positive constants } c \text{ and } n_0 \text{ such that } f(n) \leq c \cdot g(n) \text{ for } n \geq n_0
\]
The “Big-Oh” Notation

Proof

• \(f(n) = 2n + 6 \)
• \(g(n) = n \)
• \(2n + 6 \leq 4n \) when \(n \geq 3 \)
• So, if we choose \(c = 4 \), then \(n_0 = 3 \) satisfies \(f(n) \leq c \cdot g(n) \) for \(n \geq n_0 \)
• Conclusion: \(2n + 6 \) is \(O(n) \)
Asymptotic Notation

• **Note:** Even though it is *correct* to say “$7n - 3$ is $O(n^3)$”, a *more precise* statement is “$7n - 3$ is $O(n)$”, that is, one should make the approximation as *tight as possible*.

• **Simple Rule:** Drop lower order terms and constant factors

 \[
 7n-3 \text{ is } O(n) \\
 8n^2 \log n + 5n^2 + n \text{ is } O(n^2 \log n)
 \]

Asymptotic Notation

• **Special classes of algorithms**

 – constant: \(O(1) \)
 – logarithmic: \(O(\log n) \)
 – linear: \(O(n) \)
 – quadratic: \(O(n^2) \)
 – cubic: \(O(n^3) \)
 – polynomial: \(O(n^k), \ k \geq 1 \)
 – exponential: \(O(a^n), \ n > 1 \)
Asymptotic Notation

• “Relatives” of the Big-Oh
 - $\Omega(f(n))$: Big Omega
 • asymptotic lower bound
 - $\Theta(f(n))$: Big Theta
 • asymptotic tight bound

Big Omega

• **Definition**: Given two functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\Omega(g(n))$ if and only if there are positive constants c and n_0 such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

• **Property**: $f(n)$ is $\Omega(g(n))$ iff $g(n)$ is $O(f(n))$
Big Theta

• **Definition:** Given two functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\Theta(g(n))$ if and only if there are positive constants c_1, c_2 and n_0 such that $c_1 g(n) \leq f(n) \leq c_2 g(n)$ for $n \geq n_0$

• **Property:** $f(n)$ is $\Theta(g(n))$ if and only if “$f(n)$ is $O(g(n))$ AND $f(n)$ is $\Omega(g(n))$”

Summary

• $A \in O(f(n))$ means “the algorithm A won’t take longer than $f(n)$, give or take a constant multiplier and lower order terms” (upper bound)

• $A \in \Theta(f(n))$ means “the algorithm A will take as long as $f(n)$, give or take a constant multiplier and lower order terms” (tight bound)

• $A \in \Omega(f(n))$ means “the algorithm A will take longer than $f(n)$, give or take a constant multiplier and lower order terms” (lower bound)
Establishing order of growth using limits

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases}
0 & \text{order of growth of } f(n) < \text{order of growth of } g(n) \\
c > 0 & \text{order of growth of } f(n) = \text{order of growth of } g(n) \\
\infty & \text{order of growth of } f(n) > \text{order of growth of } g(n)
\end{cases} \]

Examples:

• \(10n\) vs. \(n^2\)
• \(n(n+1)/2\) vs. \(n^2\)

Orders of growth: some important functions

• All logarithmic functions \(\log_a n\) belong to the same class \(\Theta(\log n)\) no matter what the logarithm’s base \(a > 1\) is
• All polynomials of the same degree \(k\) belong to the same class: \(a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0\) in \(\Theta(n^k)\)
• Exponential functions \(a^n\) have different orders of growth for different \(a\)’s
• order \(\log n\) < order \(n\) < order \(\log n\) < order \(n^k\) (\(k \geq 2\) constant) < order \(a^n\) < order \(n!\) < order \(n^n\)
• Caution: Beware of very large constant factors
Time analysis for iterative algorithms

Steps

- Decide on parameter n indicating input size
- Identify algorithm’s basic operation
- Determine worst case(s) for input of size n
- Set up a sum for the number of times the basic operation is executed
- Simplify the sum using standard formulas and rules

Suppose each operation takes 1 nanosecond (10^{-9} seconds)

<table>
<thead>
<tr>
<th>n</th>
<th>$\lg n$</th>
<th>n</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.003μs</td>
<td>0.01μs</td>
<td>0.033μs</td>
<td>0.1μs</td>
<td>1μs</td>
<td>3.63ms</td>
</tr>
<tr>
<td>20</td>
<td>0.004μs</td>
<td>0.02μs</td>
<td>0.086μs</td>
<td>0.4μs</td>
<td>1ms</td>
<td>77.1 years</td>
</tr>
<tr>
<td>30</td>
<td>0.005μs</td>
<td>0.02μs</td>
<td>0.147μs</td>
<td>0.9μs</td>
<td>1sec</td>
<td>$\times 10^{15}$ years</td>
</tr>
<tr>
<td>100</td>
<td>0.007μs</td>
<td>0.1μs</td>
<td>0.644μs</td>
<td>10μs</td>
<td>$\times 10^{13}$ years</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>0.013μs</td>
<td>10μs</td>
<td>130μs</td>
<td>100ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.020μs</td>
<td>1ms</td>
<td>19.92μs</td>
<td>16.7min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $n < 10$, the difference is insignificant.
- $\Theta (n)$ algorithms are useless well before $n = 20$.
- $\Theta (2^n)$ algorithms are practical for $n < 40$.
- $\Theta (n^2)$ and $\Theta (n \lg n)$ are both useful, but $\Theta (n \lg n)$ is significantly faster.
Example of Asymptotic Analysis

```python
def prefixAverages1(X):
    A = []
    for i in range(len(X)):
        a = 0
        for j in range(i+1):
            a += X[j]
            A.append(a/float(i+1))
    return A
```

...then the algorithm is $O(n^2)$

A faster algorithm

- Observe that

\[
\begin{align*}
A[i - 1] &= (X[0] + X[1] + \cdots + X[i - 1])/i \\
A[i] &= (X[0] + X[1] + \cdots + X[i - 1] + X[i])/(i + 1).
\end{align*}
\]
A linear-time algorithm

```python
def prefixAverages2(X):
    A, a = [], 0
    for i in range(len(X)):
        a = a + X[i]
        A.append(a/float(i+1))
    return A
```

A trickier example

- Analyze the worst-case time complexity of the following algorithm, and give a tight bound using the big-theta notation

```python
def weirdLoop(n):
    i = n
    while i >= 1:
        for j in range(i):
            print 'Hello'
            i = i/2
    return
```
Math review

Appendix A of the textbook

Summations

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]

\[\sum_{i=0}^{n} a^i = \frac{1-a^{n+1}}{1-a} \quad \text{when } a > 0, \ a \neq 1 \]

e.g., \[\sum_{i=0}^{n} 2^i = 1 + 2 + 4 + \ldots + 2^n = 2^{n+1} - 1 \]
Binomial expansion

\[(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}\]

In particular, if we choose \(a = 1, \ b = 1\)
we get \(2^n = \sum_{k=0}^{n} \binom{n}{k}\)

Bounding sums

- **Upper bound:** Any sum is at most the number of terms times the maximum term
 - Example: \(1 + 4 + 9 + \ldots + n^2\) is at most \(n^2 = n^3\)
- **Lower bound:** If the terms are non-negative, any sum is at least half the number of terms times the median term
 - Example: \(1 + 4 + 9 + \ldots + n^2\) is at least \((n/2)^2 = n^3/8\)
Proving (or disproving) \(p \rightarrow q \)

- **Counterexample** (used to prove that \(p \rightarrow q \) is false showing one particular choice of \(p \) that makes \(q \) false)
- **Direct proof** (\(p \rightarrow p_1 \rightarrow \ldots \rightarrow p_n \rightarrow q \))
- **Contrapositive** (prove that \(\sim q \rightarrow \sim p \))
- **Contradiction** (assume \(p \) and \(\sim q \) true, find a contradiction)
- **Induction** (prove base case + induction)

Induction proof

Theorem: \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)

Proof: by induction on \(n \).

Base case: \(n = 1 \). Trivial since \(1 = 1(1+1)/2 \).

Induction step: \(n \geq 2 \). Assume the claim is true for any \(n' < n \). Then \(\sum_{i=1}^{n} i = n + \sum_{i=1}^{n-1} i = n + \frac{(n-1)n}{2} = \frac{n(n+1)}{2} \) using induction.
Recurrence Relation Analysis

Recurrence relation

- A recurrence relation is an equation that recursively define a sequence: each term of the sequence is defined as a function of the preceding term(s)
- For instance

\[
f(n) = \begin{cases}
2 & n=1 \\
(n-1) + n & n>1
\end{cases}
\]
General form

\[T(n) = \begin{cases}
 c & \text{if } n = n_0 \\
 a.T(f(n)) + g(n) & \text{otherwise}
\end{cases} \]

Definition of the Factorial function

\[F(n) = \begin{cases}
 1 & n = 0 \\
 nF(n - 1) & n \geq 1
\end{cases} \]

Recursive implementation

```python
def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n-1)
```

Time complexity?

\[T(n) = \begin{cases}
 & \text{for } n \leq _ \\
 & \text{for } n > _
\end{cases} \]
Definition of the Fibonacci function

\[F(n) = \begin{cases}
0 & n = 0 \\
1 & n = 1 \\
F(n-1) + F(n-2) & n > 1
\end{cases} \]

Recursive implementation

```python
def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)
```

Time complexity?

\[T(n) = \begin{cases}
 c_1 & n \leq \leq 1 \\
 T(n-1) + T(n-2) + nc_2 & \text{otherwise}
\end{cases} \]

Example

```python
def bugs(n):
    if n <= 1:
        do_something()
    else:
        bugs(n-1)
        bugs(n-2)
        for i in range(n):
            do_something_else()
```

\[T(n) = \begin{cases}
 c_1 & \text{if } n \leq 1 \\
 T(n-1) + T(n-2) + nc_2 & \text{otherwise}
\end{cases} \]
Example

```python
def daffy(n):
    if n == 1 or n == 2:
        do_something()
    else:
        daffy(n-1)
        for i in range(n):
            do_something_else()
            daffy(n-1)
```

\[T(n) = \begin{cases}
 c_1 & \text{if } n = 1 \text{ or } n = 2 \\
 2T(n-1) + nc_2 & \text{otherwise}
\end{cases} \]

Example

```python
def elmer(n):
    if n == 1:
        do_something()
    elif n == 2:
        do_something_else()
    else:
        for i in range(n):
            elmer(n-1)
            do_something_different()
```

\[T(n) = \begin{cases}
 c_1 & \text{if } n = 1 \\
 c_2 & \text{if } n = 2 \\
 n(T(n-1) + c_3) & \text{otherwise}
\end{cases} \]
Example

def yosemite(n):
 if n == 1:
 do_something()
 else:
 for i in range(1,n):
 yosemite(i)
 do_something_different()

\[
T(n) = \begin{cases}
 c_1 & \text{if } n = 1 \\
 \sum_{i=1}^{n-1} (T(i) + c_2) & \text{otherwise}
\end{cases}
\]

MergeSort

- MergeSort is a divide & conquer algorithm
 - Divide: divide an \(n \)-element sequence into two subsequences of approx \(n/2 \) elements
 - Conquer: sort the subsequences recursively
 - Combine: merge the two sorted subsequences to produce the final sorted sequence
MergeSort

```python
def mergesort(A):
    if len(A) < 2:
        return A
    else:
        m = len(A)/2
        l = mergesort(A[:m])
        r = mergesort(A[m:])
        return merge(l, r)
```

Example

Figure 4.2: Merge-sort tree T for an execution of the merge-sort algorithm on a sequence with 8 elements: (a) input sequences processed at each node of T; (b) output sequences generated at each node of T.
Merge of MergeSort

```python
def merge(l, r):
    result, i, j = [], 0, 0
    while i < len(l) and j < len(r):
        if l[i] <= r[j]:
            result.append(l[i])
            i += 1
        else:
            result.append(r[j])
            j += 1
    result += l[i:]
    result += r[j:]
    return result
```

MergeSort Analysis

- **Divide:** Just computes the middle of the subsequence, thus takes constant time:
 \(T(n) = \Theta(1) \)
- **Conquer:** We solve 2 subproblems of size approximately \(n/2 \):
 \(a = 2, \quad b = 2 \)
- **Combine:** Merge takes \(\Theta(n) \):
 \(C(n) = \Theta(n) \)
- Noting that \(\Theta(n) + \Theta(1) \) is still \(\Theta(n) \), we get:
 \[
 T(n) = \begin{cases}
 \Theta(1) & \text{if } n = 1 \\
 2T(n/2) + \Theta(n) & \text{if } n > 1
 \end{cases}
 \]
- Later we will see that:
 \(T(n) = \Theta(n \log n) \)
“Visual” Analysis

Figure 4.4: A visual analysis of the running time of merge-sort. Each node of the merge-sort tree is labeled with the size of its subproblem.

Solving Recurrence Relation
Methods

- Two methods for solving recurrences
 - Iterative substitution method
 - Master method

 - (not covered: Recursion Tree)
 - (not covered: Guess-and-Test method)

Iterative substitution

- Assume n large enough
- Substitute T on the right-hand side of the recurrence relation
- Iterate the substitution until we see a pattern which can be converted into a general closed-form formula
MergeSort recurrence relation

\[T(N) = 2 T\left(\frac{N}{2}\right) + N \quad \text{for} \quad N \geq 2 \]
\[T(1) = 1 \]

\[T(N) = 2 \left(2 T\left(\frac{N}{4}\right) + \frac{N}{2} \right) + N \]
\[= 4 T\left(\frac{N}{4}\right) + 2N \]
\[= 4 \left(2 T\left(\frac{N}{8}\right) + \frac{N}{4} \right) + 2N \]
\[= 8 T\left(\frac{N}{8}\right) + 3N \]
\[= 2^i T\left(\frac{N}{2^i}\right) + iN \]

The expansion stops for \(i = \log_2 N \), so that
\[T(N) = N + N \log_2 N \]
Verify the correctness

• How to verify the solution is correct?

• Use proof by induction!

• Important: make sure the constant c works for both the base case and the induction step

Proof by induction

$$T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}$$

Fact: $T(n) \in O(n \log_2 n)$

Proof: Base case: $T(2) = 2T(1) + 2 = 4 \leq c(2 \log_2 2) = 2c$. Hence, $c \geq 2$.

Induction hypothesis: $T(n/2) \leq c \frac{n}{2} \log_2 \frac{n}{2}$

Induction: $T(n) = 2T(n/2) + n$

$$\leq 2c \frac{n}{2} \log_2 \frac{n}{2} + n$$

$$= cn \log_2 \frac{n}{2} + n = cn \log_2 n - cn \log_2 2 + n$$

$$= cn \log_2 n + n(1 - c) \leq cn \log_2 n \text{ when } c \geq 1$$

Choose $c = 2$.

The constant c used in the induction and the base case has to be the same!
Wrong proof by induction

\[T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

Fact (wrong): \(T(n) \in O(n) \)

Proof. Base case: \(T(1) = 1 \leq c, \) hence \(c \geq 1 \)

Induction hypothesis: \(T(n/2) \leq c(n/2) \)

Induction: \(T(n) = 2T(n/2) + n \)

\[\leq 2c(n/2) + n \]

\[= cn + n \in O(n) \]

proof is WRONG, but where is the mistake?

Towers of Hanoi
Towers of Hanoi

Goal: transfer all N disks from peg A to peg C

Rules:
- move one disk at a time
- never place larger disk above smaller one

Recursive solution:
- transfer $N - 1$ disks from A to B
- move largest disk from A to C
- transfer $N - 1$ disks from B to C

Total number of moves:
- $T(N) = 2T(N-1) + 1$

def hanoi(n, a='A', b='B', c='C'):
 if n == 0:
 return
 hanoi(n-1, a, c, b)
 print a, '->', c
 hanoi(n-1, b, a, c)
Towers of Hanoi: Recurrence Relation

Solve

\[T(N) = \begin{cases}
2T(N - 1) + 1 & N > 1 \\
1 & N = 1
\end{cases} \]

Towers of Hanoi: Unfolding the relation

\[T(N) = 2 \times (2 \times T(N - 2) + 1) + 1 = \]
\[= 4 \times T(N - 2) + 2 + 1 = \]
\[= 4 \times (2 \times T(N - 3) + 1) + 2 + 1 = \]
\[= 8 \times T(N - 3) + 4 + 2 + 1 = \]
\[\ldots \]
\[= 2^i T(N - i) + 2^{i-1} + 2^{i-2} + \ldots + 2^1 + 2^0 \]

The expansion stops when \(i = N - 1 \)

\[T(N) = 2^{N-1} + 2^{N-2} + 2^{N-3} + \ldots + 2^1 + 2^0 \]

This is a geometric sum, so that we have:

\[T(N) = 2^N - 1 \in \Theta(2^N) \]
Problem

Problem: Solve exactly (by iterative substitution)

\[T(n) = \begin{cases}
4 & n = 1 \\
4T(n-1) + 3 & n > 1
\end{cases} \]

Solution: \(T(n) = 4^n + 4^{n-1} - 1 \)

Proof?
Another example

\[T(N) = 2T(\sqrt{N}) + 1 \quad T(2) = 0 \]

\[
2T(N^{1/2}) + 1 \\
2(2T(N^{1/4}) + 1) + 1 \\
4T(N^{1/4}) + 1 + 2 \\
8T(N^{1/8}) + 1 + 2 + 4 \\
... \\
\]

Another example

\[
2^iT\left(\frac{1}{N^{2^i}}\right) + 2^0 + 2^1 + ... + 2^i - 1 \\
\]

The expansion stops for \(N^{2^i} = 2 \)

i.e., \(i = \log \log N \)

\[T(N) = 2^0 + 2^1 + ... + 2^{\log \log N - 1} = \log N - 1 \]
Master Theorem method

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d,
\end{cases} \]

Theorem 5.6 [The Master Theorem]: Let \(f(n) \) and \(T(n) \) be defined as above.

1. If there is a small constant \(\varepsilon > 0 \) such that \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \).
2. If there is a constant \(k \geq 0 \) such that \(f(n) \) is \(\Theta(n^{\log_b a} \log^k n) \), then \(T(n) \) is \(\Theta(n^{\log_b a} \log^{k+1} n) \).
3. If there are small constants \(\varepsilon > 0 \) and \(\delta < 1 \) such that \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \) and \(af(n/b) \leq \delta f(n) \), for \(n \geq d \), then \(T(n) \) is \(\Theta(f(n)) \).

\(n/b \) stands for \(\lceil n/b \rceil \) or \(\lfloor n/b \rfloor \)

Master Theorem

<table>
<thead>
<tr>
<th>Condition on (f(n))</th>
<th>Condition</th>
<th>Conclusion on (T(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(n^{\log_b a - \varepsilon}))</td>
<td>(\varepsilon > 0)</td>
<td>(\Theta(n^{\log_b a}))</td>
</tr>
<tr>
<td>(\Theta(n^{\log_b a} \log^k n))</td>
<td>(k \geq 0)</td>
<td>(\Theta(n^{\log_b a} \log^{k+1} n))</td>
</tr>
<tr>
<td>(\Omega(n^{\log_b a + \varepsilon}))</td>
<td>(\varepsilon > 0, ; \delta < 1) (af(n/b) \leq \delta f(n))</td>
<td>(\Theta(f(n)))</td>
</tr>
</tbody>
</table>
Master method (first case)

Example 5.7: Consider the recurrence

\[T(n) = 4T(n/2) + n. \]

In this case, \(n^{\log_2 4} = n^2 \). Thus, we are in Case 1, for \(f(n) \) is \(O(n^{2-\varepsilon}) \) for \(\varepsilon = 1 \). This means that \(T(n) \) is \(\Theta(n^2) \) by the master method.

Master method (second case)

Example 5.8: Consider the recurrence

\[T(n) = 2T(n/2) + n \log n, \]

which is one of the recurrences given above. In this case, \(n^{\log_2 2} = n \). Thus, we are in Case 2, with \(k = 1 \), for \(f(n) \) is \(\Theta(n \log n) \). This means that \(T(n) \) is \(\Theta(n \log^2 n) \) by the master method.
Master method: binary search (second case)

- The Master Theorem allows us to ignore the floor or ceiling function around n/b in T(n/b) in general.
- Binary Search has for any n > 0 a running time of
 \[T(n) = T(n/2) + \Theta(1) \]
 Hence a = 1, b = 2, f(n) = \Theta(1). Since 1 = n^{log_21} the second case applies and we get:
 \[T(n) = \Theta(log n) \]

Master method: merge-sort (second case)

- For arbitrary n > 0, the running time of Merge-Sort is
 \[
 T(n) = \begin{cases}
 \Theta(1) & \text{if } n = 1 \\
 T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1
 \end{cases}
 \]
 We can approximate this from below and above by
 \[
 T(n) = \begin{cases}
 2 T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 \\
 2 T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1
 \end{cases}
 \]
 respectively. According to the Master Theorem, both have the same solution which we get by taking
 \[a = 2, b = 2, f(n) = \Theta(n) . \]
 Since n = n^{log_2 2}, the second case applies and we get:
 \[T(n) = \Theta(n \log n) \]
Master method (third case)

Example 5.9: Consider the recurrence

$$T(n) = T(n/3) + n,$$

which is the recurrence for a geometrically decreasing summation that starts with n. In this case, $n^{\log_b a} = n^{\log_3 1} = n^0 = 1$. Thus, we are in Case 3, for $f(n)$ is $\Omega(n^{0+\epsilon})$, for $\epsilon = 1$, and $af(n/b) = n/3 = (1/3)f(n)$. This means that $T(n)$ is $\Theta(n)$ by the master method.

Example 5.10: Consider the recurrence

$$T(n) = 9T(n/3) + n^{2.5}.$$

In this case, $n^{\log_b a} = n^{\log_3 9} = n^2$. Thus, we are in Case 3, for $f(n)$ is $\Omega(n^{2+\epsilon})$, for $\epsilon = 1/2$, and $af(n/b) = 9(n/3)^{2.5} = (1/3)^{1/2} f(n)$. This means that $T(n)$ is $\Theta(n^{2.5})$ by the master method.

Summary (1/3)

- **Goal:** analyze the worst-case time-complexity of iterative and recursive algorithms
- **Tools:**
 - Pseudo-code/Python
 - Big-O, Big-Omega, Big-Theta notations
 - Recurrence relations
 - Discrete Math (summations, induction proofs, methods to solve recurrence relations)
Summary (2/3)

• Pure iterative algorithm:
 – Analyze the loops
 – Determine how many times the inner core is repeated as a function of the input size
 – Determine the worst-case for the input
 – Write the number of repetitions as a function of the input size
 – Simplify the function using big-O or big-Theta notation (optional)

Summary (3/3)

• Recursive + iterative algorithm:
 – Analyze the recursive calls and the loops
 – Determine how many recursive calls are made and the size of the arguments of the recursive calls
 – Determine how much extra processing (loops) is done
 – Determine the worst-case for the input
 – Derive a recurrence relation
 – Solve the recurrence relation
 – Simplify the solution using big-O, or big-Theta