Combinatorial RNA Design: Designability and Structure-Approximating Algorithm

Jozef Haleš¹ Ján Maňuch¹,³ Yann Ponty¹,² Ladislav Stacho¹

¹Simon Fraser University, Canada
²Pacific Institute for Mathematical Sciences, Canada
³University of British Columbia, Canada

CPM 2015
RNA Structures

Composed of four bases: **adenine** (A), **guanine** (G), **cytosine** (C) and **uracil** (U)

Representations of Secondary Structures

Structure is a pair \((n, P)\), where \(n\) is the number of bases and \(P\) is a set of pairs \((i, j)\) with \(1 \leq i < j \leq n\) representing a base pair between the \(i\)-th base and the \(j\)-th base.
Representations of Secondary Structures

Structure is a pair \((n, P)\), where \(n\) is the number of bases and \(P\) is a set of pairs \((i, j)\) with \(1 \leq i < j \leq n\) representing a base pair between the \(i\)-th base and the \(j\)-th base.
Representations of Secondary Structures

Structure is a pair \((n, P)\), where \(n\) is the number of bases and \(P\) is a set of pairs \((i, j)\) with \(1 \leq i < j \leq n\) representing a base pair between the \(i\)-th base and the \(j\)-the base.
Pseudoknot-Free Secondary Structures

Let S_n denote all pseudoknot-free structures with n bases.

Pseudoknotted structure

Pseudoknot-free structure
Pseudoknot-Free Secondary Structures

Let \(S_n \) denote all pseudoknot-free structures with \(n \) bases.
Let \mathcal{M} be an energy model.
RNA Folding problem looks from the MFE structure(s).

Problem

$\text{RNA-FOLD}_\mathcal{M}$ problem

Input: RNA sequence w

Output: set of PKF structures $\arg\min_{S \in S_{|w|}} E_\mathcal{M}(w, S)$.

Assuming an *additive energy model* which adds up local contributions, finding one structure in $\text{RNA-FOLD}_\mathcal{M}(w)$ can be done in time $O(n^3 / \log(n))$ using Dynamic Programming [Nussinov, Jacobson (1980), Frid et al. (2010), etc.].
Turner model: free energy is the sum of loop energies

Source: [Lorenz, Clote (2011)]
RNA Secondary Structures

Our Results

Open Problems

Energy Models

Turner model: free energy is the sum of loop energies

Simplified models:

- **Base-pair maximization (Watson-Crick model) \mathcal{W}**: Count the number of Watson-Crick base pairs ($C \cdot G$ and $A \cdot U$)
- **Base-pair sum**: Sum of energy contributions of base pairs ($\delta_B(x, x')$) — usually includes weak base pairs $G \cdot U$
- **Stacked base-pairs**: Sum of energy contributions of consecutively nested pairs ($\delta_S(x, x', y, y')$)
- **Nearest neighbor

Source: [Lorenz, Clote (2011)]
Energy Models

- **Turner model**: free energy is the sum of loop energies

- **Simplified models**:
 - **Base-pair maximization (Watson-Crick model)** \mathcal{W}: Count the number of Watson-Crick base pairs ($C \cdot G$ and $A \cdot U$)
 - **Base-pair sum**: Sum of energy contributions of base pairs ($\delta_B(x, x')$) — usually includes weak base pairs $G \cdot U$
 - **Stacked base-pairs**: Sum of energy contributions of consecutively nested pairs ($\delta_S(x, x', y, y')$)
 - **Nearest neighbor**

Source: [Lorenz, Clote (2011)]
Let \mathcal{M} be an energy model.

Problem

RNA-DESIGN$_{\mathcal{M},\Sigma,\Delta}$ problem

Input: Secondary structure S + Energy distance $\Delta > 0$

Output: RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

$$\forall S' \in S_{|w|} \setminus \{S\} : E_{\mathcal{M}}(w, S') \geq E_{\mathcal{M}}(w, S) + \Delta$$

or \emptyset if no such sequence exists.
Simplified formulation for Watson-Crick model \mathcal{W} and $\Delta = 1$:

Problem

\[
\text{RNA-DESIGN}_\Sigma \text{ problem}
\]

Input: Secondary structure S

Output: RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

\[
\text{RNA-FOLD}_\mathcal{W}(w) = \{S\}
\]

or \emptyset if no such sequence exists.
RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model \mathcal{W} and $\Delta = 1$:

Problem

RNA-DESIGN$_\Sigma$ problem

Input: Secondary structure S

Output: RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

$$\text{RNA-FOLD}_\mathcal{W}(w) = \{ S \}$$

or \emptyset if no such sequence exists.

Example

- **a.** Target sec. str. S
- **b.** Invalid sequence for S
- **c.** Design for S

\[
\begin{align*}
\text{a.} & \quad (\ (\ .\)\ (\ .\ .\)) \\
\text{b.} & \quad \text{GGACAGGUC} \\
\text{c.} & \quad \text{ACAGGUUCU}
\end{align*}
\]
RNA Design Problem (simplified)

Simplified formulation for Watson-Crick model \mathcal{W} and $\Delta = 1$:

Problem

RNA-DESIGN_Σ problem

Input: Secondary structure S

Output: RNA sequence $w \in \Sigma^*$ — called a design for S — such that:

$$\text{RNA-FOLD}_{\mathcal{W}}(w) = \{S\}$$

or \emptyset if no such sequence exists.

Let $\text{Designable}(\Sigma)$ be the set of all structures for there exists a design.
Our Results: Definitions and notations

Given a secondary structure S.

- Let Unpaired_S be the set of all unpaired positions of S.

Example

$\text{Unpaired}_S = \{4, 8\}$
Given a secondary structure S.

- Let Unpaired_S be the set of all unpaired positions of S.
- S is **saturated** if $\text{Unpaired}_S = \emptyset$.

Let Saturated be the set of all saturated structures.

Example

![Diagram showing a not saturated and a saturated structure](image)

- not saturated
- saturated
Our Results: Definitions and notations

Given a secondary structure S.

- Let Unpaired_S be the set of all unpaired positions of S.
- S is *saturated* if $\text{Unpaired}_S = \emptyset$.
 - Let Saturated be the set of all saturated structures.
- Let $D(S)$ be the maximal *paired degree* of nodes in the tree representation of S. The *paired degree* is the number of nodes representing base pairs.

Example

Given the tree representation of S:

![Tree representation of S](image)

$D(S) = 3$
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, $\text{Designable}(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};$

Example

![Diagram showing a sequence of nucleotides with complementary pairs indicated]
Our Results: Designability over Restricted Alphabets

Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, Designable($\Sigma_{0,u}$) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};

R2 Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S \mid D(S) \leq 2\}) \cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\};

Example

![Diagram](image)
Our Results: Designability over Restricted Alphabets

Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, Designable($\Sigma_{0,u}$) = \{(n, \emptyset) | \forall n \in \mathbb{N}\};$

R2 Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S | D(S) \leq 2\}) \cup \{(n, \emptyset) | \forall n \in \mathbb{N}\};$

R3 Designable($\Sigma_{1,1}$) = \{S | D(S) \leq 2\}.

Example

![RNA secondary structure diagram]

CPM 2015 Ján Maňuch

Combinatorial RNA Design: Designability and Structure-Approximation
Our Results: Designability over Restricted Alphabets

Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, Designable($\Sigma_{0,u}$) = $\{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R2 Designable($\Sigma_{1,0}$) = ($\text{Saturated} \cap \{S \mid D(S) \leq 2\}$) \cup $\{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R3 Designable($\Sigma_{1,1}$) = $\{S \mid D(S) \leq 2\}$.

Question: Why not degree 3?
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, $\text{Designable}(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R2 $\text{Designable}(\Sigma_{1,0}) = (\text{Saturated} \cap \{S \mid D(S) \leq 2\}) \cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R3 $\text{Designable}(\Sigma_{1,1}) = \{S \mid D(S) \leq 2\}$.

Question: Why not degree 3?

Proof.

In the root:

![Diagram](image)

— we can only use $C \cdot G$ or $G \cdot C$
Our Results: Designability over Restricted Alphabets

Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, $\text{Designable}(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R2 $\text{Designable}(\Sigma_{1,0}) = (\text{Saturated} \cap \{S \mid D(S) \leq 2\}) \cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R3 $\text{Designable}(\Sigma_{1,1}) = \{S \mid D(S) \leq 2\}$.

Question: Why not degree 3?

Proof.

In the root:

C \ldots G G \ldots C C \ldots G — one of them has to repeat
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, $\text{Designable}(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R2 $\text{Designable}(\Sigma_{1,0}) = (\text{Saturated} \cap \{S \mid D(S) \leq 2\}) \cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R3 $\text{Designable}(\Sigma_{1,1}) = \{S \mid D(S) \leq 2\}$.

Question: Why not degree 3?

Proof.

In the root:

C ... G G ... C C ... G — there is an alternative fold
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, $\text{Designable}(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R2 $\text{Designable}(\Sigma_{1,0}) = (\text{Saturated} \cap \{S \mid D(S) \leq 2\}) \cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

R3 $\text{Designable}(\Sigma_{1,1}) = \{S \mid D(S) \leq 2\}$.

Question: Why not degree 3?

Proof.

In an internal node:

\[\ldots \; ? \; ? \; \ldots \; ? \; ? \; \ldots \; ? \; ? \; \ldots\]
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, $\text{Designable}(\Sigma_{0,u}) = \{(n, \emptyset) | \forall n \in \mathbb{N}\};$

R2 $\text{Designable}(\Sigma_{1,0}) = (\text{Saturated} \cap \{S | D(S) \leq 2\}) \cup \{(n, \emptyset) | \forall n \in \mathbb{N}\};$

R3 $\text{Designable}(\Sigma_{1,1}) = \{S | D(S) \leq 2\}.$

Question: Why not degree 3?

Proof.

In an internal node:

... ? C ... G C ... G ? ... — either we get a repeat, or...
Our Results: Designability over Restricted Alphabets

Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

- **R1** For every $u \in \mathbb{N}^+$, $\text{Designable}(\Sigma_{0,u}) = \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

- **R2** $\text{Designable}(\Sigma_{1,0}) = (\text{Saturated} \cap \{S \mid D(S) \leq 2\}) \cup \{(n, \emptyset) \mid \forall n \in \mathbb{N}\}$;

- **R3** $\text{Designable}(\Sigma_{1,1}) = \{S \mid D(S) \leq 2\}$.

Question: Why not degree 3?

Proof.

In an internal node:

... C C ... G G ... C G ... — ... or, the parent has the reversed base pair of a child.
Let $\Sigma_{c,u}$ be an alphabet with c pairs of complementary bases and u bases without a complementary base.

R1 For every $u \in \mathbb{N}^+$, Designable($\Sigma_{0,u}$) = \{(n, \emptyset) | \forall n \in \mathbb{N}\};

R2 Designable($\Sigma_{1,0}$) = (Saturated $\cap \{S | D(S) \leq 2\}) \cup \{(n, \emptyset) | \forall n \in \mathbb{N}\};

R3 Designable($\Sigma_{1,1}$) = \{S | D(S) \leq 2\}.

This can be easily generalized to:

Lemma

*For any structure S in Designable($\Sigma_{c,u}$), $D(S) \leq 2c$.***
Let $\Sigma_{2,0} = \{A, U, C, G\}$.
Our Results: Designability over the Complete Alphabet

Let $\Sigma_{2,0} = \{A, U, C, G\}$.

R4 $\text{Designable}(\Sigma_{2,0}) \cap \text{Saturated} = \{S \mid D(S) \leq 4\} \cap \text{Saturated}$.

Idea.

Lemma:

Use this lemma to prove that the structure is unique by a bottom-up tree induction.
Our Results: Designability over the Complete Alphabet

Let $\Sigma_{2,0} = \{A, U, C, G\}$.

R4 Designable$(\Sigma_{2,0}) \cap$ Saturated $= \{S \mid D(S) \leq 4\} \cap$ Saturated.

When unpaired positions are allowed in the target structure, our characterization is only partial:

R5 (Necessary) If $S \in$ Designable$(\Sigma_{2,0})$, then S does not contain “a node having degree more than four” (motif m_5) and “a node having one or more unpaired children, and degree greater than two” (motif $m_{3\circ}$).

![Diagram with motifs m_5 and $m_{3\circ}$]
Our Results: Designability over the Complete Alphabet

Let $\Sigma_{2,0} = \{A, U, C, G\}$.

R4 Designable($\Sigma_{2,0}$) \cap Saturated $= \{S \mid D(S) \leq 4\} \cap$ Saturated.

When unpaired positions are allowed in the target structure, our characterization is only partial:

R5 (Necessary) If $S \in$ Designable($\Sigma_{2,0}$), then S does not contain “a node having degree more than four” (motif m_5) and “a node having one or more unpaired children, and degree greater than two” (motif $m_{3\circ}$).

R6 (Sufficient) Let Separated be the set of structures for which there exists a separated (proper) coloring of the tree representation, then Separated \subset Designable($\Sigma_{2,0}$).
Our Results: Separated Coloring

Consider the tree representation T_S of structure S. Color every paired node of T_S different from the root by black ($G \cdot C$), white ($C \cdot G$) or grey color ($A \cdot U$ or $U \cdot A$). This coloring is called proper if:

1. every node has at most one black, at most one white and at most two grey children;
2. a grey node has at most one grey child;
3. a black node does not have a white child; and
4. a white node does not have a black child.
Our Results: Separated Coloring

Consider the tree representation T_S of structure S. Color every paired node of T_S different from the root by black ($G \cdot C$), white ($C \cdot G$) or grey color ($A \cdot U$ or $U \cdot A$). This coloring is called proper if:

1. every node has at most one black, at most one white and at most two grey children;
2. a grey node has at most one grey child;
3. a black node does not have a white child; and
4. a white node does not have a black child.

Given a proper coloring of T_S, let the level of each node be the number of black nodes minus the number of white nodes on the path from this node to the root.
Our Results: Separated Coloring

Consider the tree representation T_S of structure S. Color every paired node of T_S different from the root by black ($G \cdot C$), white ($C \cdot G$) or grey color ($A \cdot U$ or $U \cdot A$). This coloring is called proper if:

1. every node has at most one black, at most one white and at most two grey children;
2. a grey node has at most one grey child;
3. a black node does not have a white child; and
4. a white node does not have a black child.

Given a proper coloring of T_S, let the level of each node be the number of black nodes minus the number of white nodes on the path from this node to the root.

A proper coloring is called separated if the two sets of levels, associated with grey and unpaired nodes respectively, do not intersect.
Our Results: Separated Coloring (example)

Levels of grey nodes: 0, 1
Levels of leaves: 2, 4

This is a separated coloring

Design:

Root

CPM 2015 Ján Maňuch
Our Results: Separated Coloring (example)

Root

Levels of grey nodes: 0, 1
Levels of leaves: 2, 4

This is a separated coloring

Design:

→ GC
→ CG
→ AU
| UA
→ U

GAAAAGUUGGUUUUUCCUUCUCAGGUUUUCCUGUUUC
Our Results: Separated Coloring (example)

Levels of grey nodes: 0, 1
Levels of leaves: 2, 4

This is a separated coloring

Design:
- GC → CG → AU
 | |
- UA → U

GAAAAGUUGGUUUUUCCUUCAGGUUUUCCUGUUUC
Our Results: Separated Coloring (example)

Levels of grey nodes: 0,1
Levels of leaves: 2,4
This is a separated coloring
Our Results: Separated Coloring (example)

Levels of grey nodes: 0, 1
Levels of leaves: 2, 4
This is a separated coloring
Design: • → GC ○ → CG ◦ → AU|UA × → U

GAAAAGUUGGUUUUUUCUUCUCAGGUUUUCCUUGUUUC

CPM 2015 Ján Maňuch
Our Results: Separated Coloring (sketch of the proof)

Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

Lemma

Any $A·U$ base pair must be between positions on the same level.

Proof. If not that the portion enclosed by this base pair has an imbalance in the number of C and G, hence, not all of them are base-paired, a contradiction. All U's unpaired in S, must be also unpaired in S'. The claim follows by the result $R4$ (for saturated structures).
Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.
Our Results: Separated Coloring (sketch of the proof)

Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.

Lemma

Any A · U base pair must be between positions on the same level.
Our Results: Separated Coloring (sketch of the proof)

Let w be the sequence obtained from the separated coloring.

Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.

Lemma

Any $A \cdot U$ base pair must be between positions on the same level.

Proof.

If not that the portion enclosed by this base pair has an imbalance in the number of C and G, hence, not all of them are base-paired, a contradiction.
Our Results: Separated Coloring (sketch of the proof)

Let w be the sequence obtained from the separated coloring.
Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.

Lemma

Any A·U base pair must be between positions on the same level.

Proof.

If not that the portion enclosed by this base pair has an imbalance in the number of C and G, hence, not all of them are base-paired, a contradiction.

- All U’s unpaired in S, must be also unpaired in S'.
Let w be the sequence obtained from the separated coloring. Let S' be an MFE fold for w.

- In S, every C, G and A is paired.
- Hence, in S', every C, G and A must be paired.

Lemma

Any A·U base pair must be between positions on the same level.

Proof.

If not that the portion enclosed by this base pair has an imbalance in the number of C and G, hence, not all of them are base-paired, a contradiction.

- All U’s unpaired in S, must be also unpaired in S'.
- The claim follows by the result R4 (for saturated structures).
Our Results: Designability over the complete alphabet

Let $\Sigma_{2,0} = \{A, U, C, G\}$.

R4 Designable($\Sigma_{2,0}$) \cap Saturated $= \{S \mid D(S) \leq 4\} \cap$ Saturated.

When unpaired positions are allowed in the target structure, our characterization is only partial:

R5 (Necessary) If $S \in$ Designable($\Sigma_{2,0}$), then S does not contain “a node having degree more than four” (motif m_5) and “a node having one or more unpaired children, and degree greater than two” (motif m_{3^o}).

R6 (Sufficient) Let Separated be the set of structures for which there exists a separated (proper) coloring of the tree representation, then Separated \subset Designable($\Sigma_{2,0}$)
Let $\Sigma_{2,0} = \{A, U, C, G\}$.

R4 Designable($\Sigma_{2,0}$) \cap Saturated $= \{S \mid D(S) \leq 4\} \cap$ Saturated.

R5 (Necessary) If $S \in$ Designable($\Sigma_{2,0}$), then S does not contain "a node having degree more than four" (motif m_5) and "a node having one or more unpaired children, and degree greater than two" (motif m_{3^o}).

R6 (Sufficient) Let Separated be the set of structures for which there exists a separated (proper) coloring of the tree representation, then Separated \subset Designable($\Sigma_{2,0}$).

R7 If $S \in$ Designable($\Sigma_{2,0}$), then k-stutter $S[^k] \in$ Designable($\Sigma_{2,0}$).
Our Results: k-Stutter (example)

Designable structure: \(((.) (..))\)
Our Results: k-Stutter (example)

Designable structure:

\[
\text{A C A G G U U C U}
\]

Then 2-stutter is designable as well:
Our Results: \(k \)-Stutter (example)

Designable structure: \[A \ C \ A \ G \ G \ U \ U \ C \ U \]

Then 2-stutter is designable as well:
Our Results: k-Stutter (example)

Designable structure: A C A G G U U C U

Then 2-stutter is designable as well:
Our Results: k-Stutter (example)

Designable structure: A C A G G U U C U

Then 2-stutter is designable as well:

Proof idea: Use König’s Theorem (size of max. matching = size of min. vertex cover) to show that an MFE structure of the stutter sequence can’t connect a region to two different regions.
R8 Any structure S without m_5 and m_3^e can be transformed in $\Theta(n)$ time into a $\Sigma_{2,0}$-designable structure S', by inflating a subset of its base pairs (at most one per band) so that the greedy coloring of the resulting structure is separated.
Our Results: Structure-Approximating Algorithm

\textbf{R8} Any structure S without m_5 and m_3° can be transformed in $\Theta(n)$ time into a $\Sigma_{2,0}$-designable structure S', by inflating a subset of its base pairs (at most one per band) so that the greedy coloring of the resulting structure is separated.
Our Results: Structure-Approximating Algorithm

R8 Any structure S without m_5 and m_3° can be transformed in $\Theta(n)$ time into a $\Sigma_{2,0}$-designable structure S', by inflating a subset of its base pairs (at most one per band) so that the greedy coloring of the resulting structure is separated.

The main idea: Use inflating to separate grey vertices and leaves to odd/even levels.
Any structure S without m_5 and m_3° can be transformed in $\Theta(n)$ time into a $\Sigma_{2,0}$-designable structure S', by inflating a subset of its base pairs (at most one per band) so that the greedy coloring of the resulting structure is separated.

The main idea: Use inflating to separate grey vertices and leaves to odd/even levels.

Remark: Arcs could be added to remove motifs m_5 and m_3° (after which the algorithm could be applied).
Remark: Breaking motifs
Remark: Breaking motifs
Open Problems and Future Work

1. What’s the complexity of RNA-DESIGN problem? Could it be polynomial?
Open Problems and Future Work

1. What’s the complexity of RNA-DESIGN problem? Could it be polynomial?

2. What’s the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?

(.) (.) (.)
G U C C A G A G U
Open Problems and Future Work

1. What’s the complexity of RNA-DESIGN problem? Could it be polynomial?
2. What’s the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?
3. What’s the complexity of determining if a structure has a separated coloring?

Our results hold for the Base-pair sum model, as long as $-\delta_B(G, U)$ is smaller than $-\delta_B(C, G)$ and $-\delta_B(A, U)$. Extend the results to more complex energy models.

4. Find a better bound on the number of arcs that need to be inflated in our approximation algorithm.
Open Problems and Future Work

1. What’s the complexity of RNA-DESIGN problem? Could it be polynomial?

2. What’s the complexity of RNA-DESIGN problem restricted to designs that use only one base for all unpaired position?

3. What’s the complexity of determining if a structure has a separated coloring?

4. Extend the results to more complex energy models. Our results hold for the Base-pair sum model, as long as $-\delta_B(G, U)$ is smaller than $-\delta_B(C, G)$ and $-\delta_B(A, U)$.
Open Problems and Future Work

1. What’s the complexity of **RNA-DESIGN** problem? Could it be polynomial?
2. What’s the complexity of **RNA-DESIGN** problem restricted to designs that use only one base for all unpaired position?
3. What’s the complexity of determining if a structure has a separated coloring?
4. Extend the results to more complex energy models. Our results hold for the **Base-pair sum** model, as long as $-\delta_B(G, U)$ is smaller than $-\delta_B(C, G)$ and $-\delta_B(A, U)$.
5. Find a better bound on the number of arcs that need to be inflated in our approximation algorithm.