
The worst case complexity of Maximum
Parsimony

I Amir Carmel

I Noa Musa-Lempel

I Dekel Tsur

I Michal Ziv-Ukelson

Ben-Gurion University

June 12, 2014

1 / 23



What’s a phylogeny
Phylogenies:

I Graph-like structures whose topology describes the inferred
evolutionary history among a set of species.

I Modeled as either rooted or unrooted labeled binary trees,
where the input entities are assigned to the leaf vertices.

2 / 23



Character based methods for phylogenetic reconstruction

I Each specie is characterized by a sequence of letters.

I We are given a subsitution scoring matrix over the letters.

I Position independence is assumed.

A

C

C

T

T

C

C

C

G

G

A

A

G

A

A

G

G

G

G

G

G

A

G

G

G

T

T

T

T

T

T

T

A

A

T

1:

2:

3:

4:

5:

3 / 23



rooted/unrooted phylogeny

I The decision whether to model phylogenies as rooted versus
unooted depends on the substitution scoring matrix.

I Modeling phylogenies as unrooted trees requires the
assumption of symmetric scoring matrices.

I Today, many applications apply asymmetric scoring matrices.

4 / 23



Parsimony Maximization

I A classical approach for phylogenetic reconstruction.

I The Parsimony Maximization approach seeks the phylogenetic
tree that supposes the least amount of evolutionary change
explaining the observed data.

I There are two classical problems inferred from phylogenetic
parsimony maximization: Small Parsimony (SP) and
Maxmimum Parsimony (MP).

5 / 23



Small Parsimony Problem (SP)
Input: multiple alignment, tree topology on n leaves.

A

C

C

T

T

C

C

C

G

G

A

A

G

A

A

G

G

G

G

G

G

A

G

G

G

T

T

T

T

T

T

T

A

A

T

1:

2:

3:

4:

5:

1 2 3

4 5

Goal: Assignment to internal vertices that minimizes the scoring
function.

1 2 3

4 5C C C

G G

C C

G

C

Score = 1

1 2 3

4 5C C C

G G

C C

C

C

Score = 2

We note that known algorithms for Small Parsimony traverse the
tree in a bottom up manner.

6 / 23



Small Parsimony Problem (SP)
Input: multiple alignment, tree topology on n leaves.

A

C

C

T

T

C

C

C

G

G

A

A

G

A

A

G

G

G

G

G

G

A

G

G

G

T

T

T

T

T

T

T

A

A

T

1:

2:

3:

4:

5:

1 2 3

4 5

Goal: Assignment to internal vertices that minimizes the scoring
function.

1 2 3

4 5C C C

G G

C C

G

C

Score = 1

1 2 3

4 5C C C

G G

C C

C

C

Score = 2

We note that known algorithms for Small Parsimony traverse the
tree in a bottom up manner.

6 / 23



Maximum Parsimony Problem (MP)
Input: multiple alignment

A

C

C

T

T

C

C

C

G

G

A

A

G

A

A

G

G

G

G

G

G

A

G

G

G

T

T

T

T

T

T

T

A

A

T

1:

2:

3:

4:

5:

Goal: topology and assignments to internal vertices, that
minimizes the SP score.

1 2 3

4 5C C C

G G

C C

G

C

Score = 1

1 2 3

4 5C C C

G G

C C

C

C

Score = 2

1 4

3

2 5

C G

C

C G

C

C

C

C

Score = 2

The Maximum Parsimony (MP) problem is NP-hard [L. R. Foulds
and R. L. Graham (1982)].

7 / 23



Maximum Parsimony Problem (MP)
Input: multiple alignment

A

C

C

T

T

C

C

C

G

G

A

A

G

A

A

G

G

G

G

G

G

A

G

G

G

T

T

T

T

T

T

T

A

A

T

1:

2:

3:

4:

5:

Goal: topology and assignments to internal vertices, that
minimizes the SP score.

1 2 3

4 5C C C

G G

C C

G

C

Score = 1

1 2 3

4 5C C C

G G

C C

C

C

Score = 2

1 4

3

2 5

C G

C

C G

C

C

C

C

Score = 2

The Maximum Parsimony (MP) problem is NP-hard [L. R. Foulds
and R. L. Graham (1982)].

7 / 23



Measuring SP and MP complexity in terms of assignment
operations

I Assignment operation - time to compute the assignment for a
single vertex.

I This depends on the scoring scheme employed, for example:
Fitch’s algorithm (Hamming distance) O(m), Sankoff’s
algorithm (weighted edit distance) O(mΣ2).

8 / 23



Our contribution

Previous results:

I Cavalli-Sforza and Edwards (1967) - (n − 1) · (2n − 3)!!
assignment operations.

I Hendy and Penny (1982) - branch&bound algorithm for MP.

Where (2n − 3)!! = 1× 3× 5× . . .× (2n − 3).

9 / 23



Our contribution

New results:

I Cavalli-Sforza and Edwards (1967) - (n − 1) · (2n − 3)!!
assignment operations.

I Hendy and Penny (1982) - branch&bound algorithm for MP.
Worst case running time: Θ(

√
n · (2n − 3)!!) assignment

operations.

I A new, faster algorithm which executes Θ((2n − 3)!!)
assignment operations.

Where (2n − 3)!! = 1× 3× 5× . . .× (2n − 3)

9 / 23



The algorithm of Cavalli-Sforza and Edwards

I Cavalli-Sforza and Edwards showed that the number of rooted
phylogenies with n leaves is (2n − 3)!!.

I The algorithm enumerates all phylogenies with n leaves, and
then solves the Small Parsimony (SP) problem on each tree.

I Each phylogeny has exactly n − 1 internal vertices, therefore
the algorithm has a running time of (n − 1) · (2n − 3)!!
assignment operations.

10 / 23



The algorithm of Cavalli-Sforza and Edwards

I Cavalli-Sforza and Edwards showed that the number of rooted
phylogenies with n leaves is (2n − 3)!!.

I The algorithm enumerates all phylogenies with n leaves, and
then solves the Small Parsimony (SP) problem on each tree.

I Each phylogeny has exactly n − 1 internal vertices, therefore
the algorithm has a running time of (n − 1) · (2n − 3)!!
assignment operations.

10 / 23



The algorithm of Cavalli-Sforza and Edwards

I Cavalli-Sforza and Edwards showed that the number of rooted
phylogenies with n leaves is (2n − 3)!!.

I The algorithm enumerates all phylogenies with n leaves, and
then solves the Small Parsimony (SP) problem on each tree.

I Each phylogeny has exactly n − 1 internal vertices, therefore
the algorithm has a running time of (n − 1) · (2n − 3)!!
assignment operations.

10 / 23



The algorithm of Cavalli-Sforza and Edwards

I Cavalli-Sforza and Edwards showed that the number of rooted
phylogenies with n leaves is (2n − 3)!!.

I The algorithm enumerates all phylogenies with n leaves, and
then solves the Small Parsimony (SP) problem on each tree.

I Each phylogeny has exactly n − 1 internal vertices, therefore
the algorithm has a running time of (n − 1) · (2n − 3)!!
assignment operations.

10 / 23



The algorithm of Hendy and Penny

Preliminaries:

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Enumeration space:

1 2

3

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Enumeration space:

1 2

3

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Enumeration space:

1 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1

2

3

1 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1

2

3

1 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

4 2

1

3

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

21 4 34 2

1

3

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1 2

3

4

21 4 34 2

1

3

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1 2

3

4

21 4 34 2

1

3

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1 2

3

4

21 4 34 2

1

3

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

The search space tree is developed in top-down order, while the
recalculations of assignments is done in a bottom-up order.

11 / 23



The algorithm of Hendy and Penny

Assignment operations:

1 2

3

4

21 4 34 2

1

3

1

2

3

41 2

3

4

1 2

1 2

3

1 3

2 1

3 2

1

The complexity of the algorithm equals to the number of
assignment operations.

11 / 23



The algorithm of Hendy and Penny

Their algorithm was originally proposed for the purpose of branch
and bound and its worst case bound was not previously properly
analyzed. Using combinatorial methods we managed to achieve an
exact bound.

12 / 23



The number of assignment operations

I Let NumAnc(v) denote the number of ancestors of x in Fv .

I

2 6 7

5 4

1 3

x

I The number of ancestors of x in Fv is equal to the number of
assignment operations executes in node v .

I Let Hi be the sum of NumAnc(v) for all nodes v in level
i + 1.

I By definition,
∑

NumAnc(v) =
∑n−1

i=1 Hi .

13 / 23



The number of assignment operations

I Let NumAnc(v) denote the number of ancestors of x in Fv .

I

2 6 7

5 4

1 3

x

I The number of ancestors of x in Fv is equal to the number of
assignment operations executes in node v .

I Let Hi be the sum of NumAnc(v) for all nodes v in level
i + 1.

I By definition,
∑

NumAnc(v) =
∑n−1

i=1 Hi .

13 / 23



The number of assignment operations

I Let NumAnc(v) denote the number of ancestors of x in Fv .

I

2 6 7

5 4

1 3

x

I The number of ancestors of x in Fv is equal to the number of
assignment operations executes in node v .

I Let Hi be the sum of NumAnc(v) for all nodes v in level
i + 1.

I By definition,
∑

NumAnc(v) =
∑n−1

i=1 Hi .

13 / 23



The number of assignment operations

I Let NumAnc(v) denote the number of ancestors of x in Fv .

I

2 6 7

5 4

1 3

x

I The number of ancestors of x in Fv is equal to the number of
assignment operations executes in node v .

I Let Hi be the sum of NumAnc(v) for all nodes v in level
i + 1.

I By definition,
∑

NumAnc(v) =
∑n−1

i=1 Hi .

13 / 23



The number of assignment operations

I Let NumAnc(v) denote the number of ancestors of x in Fv .

I

2 6 7

5 4

1 3

x

I The number of ancestors of x in Fv is equal to the number of
assignment operations executes in node v .

I Let Hi be the sum of NumAnc(v) for all nodes v in level
i + 1.

I By definition,
∑

NumAnc(v) =
∑n−1

i=1 Hi .

13 / 23



The number of assignment operations

Lemma 1
Hi = (2i)!!− (2i − 1)!!.

Theorem 2
The assignment operations complexity of the algorithm of Hendy
and Penny is Θ(

√
n(2n − 3)!!).

14 / 23



A new, more efficient search space tree

21 3 4

15 / 23



A new, more efficient search space tree

1 2 3 4

21 3 4

15 / 23



A new, more efficient search space tree

1 3 2 41 2 3 4

21 3 4

15 / 23



A new, more efficient search space tree

3 41 21 3 2 41 2 3 4

21 3 4

15 / 23



A new, more efficient search space tree

1 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

15 / 23



A new, more efficient search space tree

1 2

4

31 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

15 / 23



A new, more efficient search space tree

1 2 3 41 2

4

31 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

15 / 23



A new, more efficient search space tree

1 2 3 41 2

4

31 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

First challenge: The same node can be obtained from two different se-

quences of merge operations.

15 / 23



A new, more efficient search space tree

1 2 3 41 2

4

31 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

First challenge: The same node can be obtained from two different se-

quences of merge operations.

15 / 23



A new, more efficient search space tree

1 2

3

4

1 2

4

3

1 2 3 4

3

1

42 1 3

2

4

4 3

1

2

43

2

1

1 2 3 41 2

4

31 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

Second challenge: We need to count the number of nodes in the search

space tree.

15 / 23



A new, more efficient search space tree

I The new algorithm develops the search space tree bottom up,
which flows along with the natural bottom up direction of
Small Parsimony.

I We first define a graph Gn, and then, using canonical
representation for each node, we transform Gn into a tree Tn
by removing redundant edges.

I Using combinatorial analysis we showed that the size of Tn is
approximately e · (2n − 3)!!.

I Traversing the search space tree requires performing exactly
one assignment operation per node, thus the complexity of
our new MP algorithm is Θ((2n − 3)!!)

16 / 23



A new, more efficient search space tree

I The new algorithm develops the search space tree bottom up,
which flows along with the natural bottom up direction of
Small Parsimony.

I We first define a graph Gn, and then, using canonical
representation for each node, we transform Gn into a tree Tn
by removing redundant edges.

I Using combinatorial analysis we showed that the size of Tn is
approximately e · (2n − 3)!!.

I Traversing the search space tree requires performing exactly
one assignment operation per node, thus the complexity of
our new MP algorithm is Θ((2n − 3)!!)

16 / 23



A new, more efficient search space tree

I The new algorithm develops the search space tree bottom up,
which flows along with the natural bottom up direction of
Small Parsimony.

I We first define a graph Gn, and then, using canonical
representation for each node, we transform Gn into a tree Tn
by removing redundant edges.

I Using combinatorial analysis we showed that the size of Tn is
approximately e · (2n − 3)!!.

I Traversing the search space tree requires performing exactly
one assignment operation per node, thus the complexity of
our new MP algorithm is Θ((2n − 3)!!)

16 / 23



A new, more efficient search space tree

I The new algorithm develops the search space tree bottom up,
which flows along with the natural bottom up direction of
Small Parsimony.

I We first define a graph Gn, and then, using canonical
representation for each node, we transform Gn into a tree Tn
by removing redundant edges.

I Using combinatorial analysis we showed that the size of Tn is
approximately e · (2n − 3)!!.

I Traversing the search space tree requires performing exactly
one assignment operation per node, thus the complexity of
our new MP algorithm is Θ((2n − 3)!!)

16 / 23



From Gn to Tn
For a node u in the search space, we denote by Fu the
corresponding forest.

I For a tree T in a forest define the label of T to be

label(T ) = min{label(v) : v is a leaf in T}.

I The label of a forest F is

label(F ) = min{label(T ) : T is a non-singleton tree in F}.

I For a node u. let Tu denote the tree in Fu for which
label(Fu) = label(Tu).

Definition
The search space tree Tn is a tree whose nodes are the nodes of
Gn. A node v is the parent of a node u in Tn if Fv is obtained from
Fu by deleting the root of Tu.

17 / 23



From Gn to Tn

1 2 3 41 2

4

31 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

18 / 23



From Gn to Tn

1 2 3 41 2

4

31 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

18 / 23



From Gn to Tn

The definition of Tn gives a characterization for the parent of a
node in the tree. In order to perform a top-down traversal of the
search space tree, we need a characterization for the children of a
node. Such characterization is given in the following lemma.

Lemma 2
A node u is a child of a node v in Tn if and only if Fu is obtained
from Fv by merging two trees T1 and T2 from Fv with
label(T1) < label(T2) and either

1. T1 = Tv (and in particular, T1 is not a singleton), or

2. T1 is a singleton and label(T1) < label(Tv ).

19 / 23



From Gn to Tn

1 2

4

31 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

1. T1 = Tv (and in particular, T1 is not a singleton), or

2. T1 is a singleton and label(T1) < label(Tv ).

20 / 23



From Gn to Tn

1 2 3 41 2

4

31 2

3

4

3 41 21 3 2 41 2 3 4

21 3 4

1. T1 = Tv (and in particular, T1 is not a singleton), or

2. T1 is a singleton and label(T1) < label(Tv ).

20 / 23



Complexity of the new search space
I Let An

i denote the number of nodes in level i of Tn.
I Let Lni ,k denote the number of nodes v in level i for which

label(Fv ) = k .
I For example, An

0 = 1, An
1 =

(n
2

)
, and An

n−1 = (2n − 3)!!.

I Let µn denote the size of Tn. i.e. µn =
∑n−1

i=0 An
i .

Lemma 3
Lni+1,k = (n − i − k)

∑n−i
l=k L

n
i ,l .

Lemma 4
Lni ,k = (2i − 1)!!

(n−k+i−1
2i−1

)
.

Lemma 5
An
i = (2i − 1)!!

(n+i−1
2i

)
.

Theorem 3
The assignment operations complexity for solving MP using the
new search space is (1 + o(1)) · e · (2n − 3)!!, i.e.
µn ∼ e · (2n − 3)!!.

21 / 23



Complexity of the new search space
I Let An

i denote the number of nodes in level i of Tn.
I Let Lni ,k denote the number of nodes v in level i for which

label(Fv ) = k .
I For example, An

0 = 1, An
1 =

(n
2

)
, and An

n−1 = (2n − 3)!!.

I Let µn denote the size of Tn. i.e. µn =
∑n−1

i=0 An
i .

Lemma 3
Lni+1,k = (n − i − k)

∑n−i
l=k L

n
i ,l .

Lemma 4
Lni ,k = (2i − 1)!!

(n−k+i−1
2i−1

)
.

Lemma 5
An
i = (2i − 1)!!

(n+i−1
2i

)
.

Theorem 3
The assignment operations complexity for solving MP using the
new search space is (1 + o(1)) · e · (2n − 3)!!, i.e.
µn ∼ e · (2n − 3)!!.

21 / 23



Summary

I We studied the classical problem of exact Maximum
Parsimony, focusing on the running time complexity of various
algorithms for the problem.

I The first approach proposed by Cavalli-Sforza and Edwards
yields an assignment operations complexity of
(n − 1) · (2n − 3)!!.

I The second approach we analyzed was proposed by Hendy
and Penny. Its theoretical running time complexity has not
been previously analyzed. We showed that the assignment
operations complexity of this approach is smaller by a factor
of Θ(

√
n).

I We proposed a new, faster MP approach, whose assignment
operations complexity is smaller by a factor of Θ(

√
n) than

the complexity of the Hendy and Penny approach.

22 / 23



Thank You

23 / 23


