

Compressed Subsequence Matching and Packed Tree Coloring

Philip Bille, Patrick Hagge Cording, and Inge Li Gørtz

DTU Compute, Technical University of Denmark, phaco@dtu.dk

CPM, Moscow June 16, 2014

Subsequence matching

- ▶ Given a string *S* and a pattern *P* , find all minimal substrings of *S* where *P* is a subsequence.
- An occurrence S[i,j] is minimal if P is not a subsequence of S[i+1,j] or S[i,j-1].

Motivation

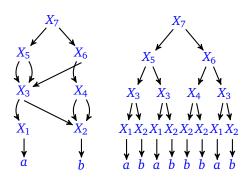
Example: Searching patient logs

- ▶ A patient log is a sequence of event the patient has undergone.
- ▶ A query could be "give me all patients diagnosed with disease *A* and given medicine *B* at least *k* times before undergoing surgery *C* (regardless of what happened in between)".
- ▶ Pattern is then $P = AB^kC$.

Straight Line Programs

- ▶ A grammar in Chomsky normal form that derives one string only.
- ► Consists of production rules $X_1, ..., X_n$ of the form $X_i = X_l X_r$ (nonterminal) or $X_i = a$ (terminal).

Example:



Results

Compressed subsequence matching

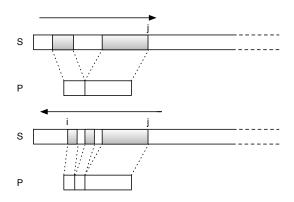
Given a string of size N compressed by an SLP of size n, and a pattern of size m over an alphabet of size σ in the RAM model with word size $w \ge \log N$.

	Time	Space
Cegielski et al.	$O(nm^2\log m + occ)$	$O(nm^2)$
Tiskin	$O(nm^{1.5} + occ)$	O(nm)
Tiskin	$O(nm\log m + occ)$	O(nm)
Yamamoto et al.	O(nm + occ)	O(nm)
This work	$O(n + \frac{n\sigma}{w} + m \log N \log w \cdot occ)$ $O(n + \frac{n\sigma}{w} \log w + m \log N \cdot occ)$	$O(n + \frac{n\sigma}{w})$

Our algorithm

- ▶ uses less space and is faster for $occ = o(\frac{n}{\log N})$ (assuming $\sigma \le m$),
- ▶ is output sensitive.

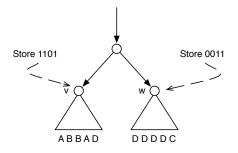
Uncompressed algorithm



- ▶ *P* is a subsequence of S[1,j].
- ▶ *P* is a subsequence of S[i,j] and S[i,j] is a minimal occurrence.
- ▶ Algorithm runs in O(Nm) time.

Basic compressed algorithm

- ▶ Store a bit-string summary of characters for each node in the SLP.
- ▶ Use summaries to find next occurrence of characters in *P*.



▶ $O(n + \frac{n\sigma}{w} + mh \cdot occ)$ time and $O(\frac{n\sigma}{w})$ space, where h is the height of the SLP.

New algorithm (1/2)

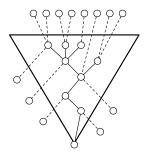
Heavy path decomposition of the SLP

- ► For production rule v = uw, the edge $\{v, u\}$ is heavy if $|S(u)| \ge |S(w)|$, otherwise $\{v, w\}$ is heavy.
- Creates a forest where trees are rooted in the leaves of the SLP the *heavy forest*.
- ▶ At most log N trees on any path from the root of the SLP to a leaf.

New algorithm (2/2)

Find first occurrence of P[i]

- Store summaries of characters to the left and right.
- Query for each tree on path:
 - Find deepest node whose left hanging child (in the SLP) generates P[i].
 - ▶ Check if the root of the tree generates P[i].
 - ► Find the highest node whose right hanging child (in the SLP) generates *P*[*i*].



▶ $O(n + \frac{n\sigma}{w} + p(n) + m \log N \cdot q(n) \cdot occ)$ time and $O(n + \frac{n\sigma}{w} + s(n))$ space.

Problem and known solutions

Preprocess a colored tree *T* with *t* nodes to support first and last colored ancestor queries.

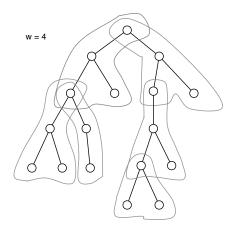
- ▶ A first colored ancestor query FIRSTCOLOR(v, c) is the lowest ancestor of v with color c.
- ▶ A last colored ancestor query LASTCOLOR(u, v, c) is the highest node with color c on the path from u to v, where we always assume that u is an ancestor of v.

Known solutions:

- ▶ q(t) = O(1) query time, $s(t) = O(t\sigma)$ space, $p(t) = O(t\sigma)$ preprocessing time.
- ▶ $q(t) = O(\log w)$ query time, s(t) = O(t + D) space, p(t) = O(t + D) preprocessing time.
 - $D = O(t\sigma)$ is the accumulated number of colors used.

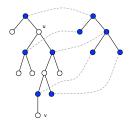
Two level solution

- ▶ Convert T to a binary tree T'.
- \triangleright Partition T' into clusters.
 - ▶ Clusters have size $< c \cdot w$ for a constant c.
 - Clusters have at most two boundary nodes.
 - ▶ Tree comprised of boundary nodes has size $O(\frac{t}{w})$.



Solution for tree comprised of boundary nodes

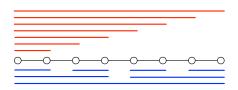
- ▶ Precompute solutions to FIRSTCOLOR queries.
- For each color c, store the tree consisting only of nodes with color c.
- Build a levelled ancestor data structure for each induced colored subtree.
- \blacktriangleright A LASTCOLOR(u, v, c) query:
 - ► Let u' = FIRSTCOLOR(u, c) and v' = FIRSTCOLOR(v, c).
 - ► LASTCOLOR(u, v, c) = LA(v', depth(u') + 1) in the subtree with c-colored nodes.



▶ O(1) query time, $O(\frac{t\sigma}{w})$ space and preprocessing time.

Solution 1 for clusters

- ▶ Make a heavy path decomposition of *T*.
- ► For each node, store a bit-string summary of colors of ancestors on heavy path.
- ➤ On each heavy path, store a bit-string summary of colors for disjoint subpaths of length 2, 4, ..., t.



- ▶ A FIRSTCOLOR(v, c) query (LASTCOLOR queries are similar):
 - ▶ Find deepest heavy path that contains *c*.
 - ▶ Binary search for nearest *c*-colored node on path.
- ▶ $O(\log w)$ query time, $O(\frac{t\sigma}{w})$ space and preprocessing time.

Solution 2 for clusters

- Assign nodes post-order indices
- ▶ Store a bit-string B_c for each color c where $B_c[v] = 1 \iff v$ has color c
- ▶ Store a bit-string A_u for each node u where $A_u[v] = 1 \iff v$ is an ancestor of u
- ▶ A FIRSTCOLOR(v, c) query (LASTCOLOR queries are similar):
 - ► Compute $R = B_c$ AND A_v .
 - ► Find the index of the least significant set bit in *R*.

	V									
A_v	1	1 1	1	1	1					
					AND					
B_c	1	1	1		1	1	1	1		
					=					
R	1	1	1		1					

▶ O(1) query time, $O(\frac{t\sigma}{w})$ space, $O(\frac{t\sigma}{w}\log w)$ preprocessing time.

Summary

The packed tree color problem can be solved using $s(t) = O(t + \frac{t\sigma}{w})$ space,

- (i) $q(t) = O(\log w)$ query time and $p(t) = O(t + \frac{t\sigma}{w})$ preprocessing time, or
- (ii) q(t) = O(1) query time and $p(t) = O(t + \frac{t\sigma}{w} \log w)$ preprocessing time.

Compressed subsequence matching can be solved using O(n+s(n)) words of space and time $O(n+p(n)+m\log N\cdot q(n)\cdot occ)$.

Summary

The packed tree color problem can be solved using $s(t) = O(t + \frac{t\sigma}{w})$ space,

- (i) $q(t) = O(\log w)$ query time and $p(t) = O(t + \frac{t\sigma}{w})$ preprocessing time, or
- (ii) q(t) = O(1) query time and $p(t) = O(t + \frac{t\sigma}{w} \log w)$ preprocessing time.

Compressed subsequence matching can be solved using $O(n + \frac{n\sigma}{w})$ words of space and time

- (i) $O(n + \frac{n\sigma}{w} + m \log N \log w \cdot occ)$, or
- (ii) $O(n + \frac{n\sigma}{w} \log w + m \log N \cdot occ)$.