
Compressed Subsequence Matching
and Packed Tree Coloring

Philip Bille, Patrick Hagge Cording, and Inge Li Gørtz

DTU Compute, Technical University of Denmark, phaco@dtu.dk

CPM, Moscow
June 16, 2014

1 / 16

Subsequence matching

I Given a string S and a pattern P , find all minimal substrings of S
where P is a subsequence.

I An occurrence S[i, j] is minimal if P is not a subsequence of
S[i + 1, j] or S[i, j− 1].

2 / 16

Motivation

Example: Searching patient logs
I A patient log is a sequence of event the patient has undergone.
I A query could be “give me all patients diagnosed with disease A

and given medicine B at least k times before undergoing surgery C
(regardless of what happened in between)”.

I Pattern is then P = ABkC.

3 / 16

Straight Line Programs
I A grammar in Chomsky normal form that derives one string only.
I Consists of production rules X1, . . . ,Xn of the form Xi = XlXr

(nonterminal) or Xi = a (terminal).

Example:

X7

X6X5

X3 X4

X1 X2

a b

X7

X5

X3

X1

a

X2

b

X3

X1

a

X2

b

X6

X4

X2

b

X2

b

X3

X1

a

X2

b

4 / 16

Results
Compressed subsequence matching

Given a string of size N compressed by an SLP of size n, and a pattern
of size m over an alphabet of size σ in the RAM model with word size
w ≥ log N.

Time Space
Cegielski et al. O(nm2 log m + occ) O(nm2)
Tiskin O(nm1.5 + occ) O(nm)
Tiskin O(nm log m + occ) O(nm)
Yamamoto et al. O(nm + occ) O(nm)

This work
O(n + nσ

w + m log N log w · occ) O(n + nσ
w)O(n + nσ

w log w + m log N · occ)

Our algorithm
I uses less space and is faster for occ = o(n

log N) (assuming σ ≤ m),
I is output sensitive.

5 / 16

Uncompressed algorithm

S

P

j

S

P

ji

I P is a subsequence of S[1, j].
I P is a subsequence of S[i, j] and S[i, j] is a minimal occurrence.
I Algorithm runs in O(Nm) time.

6 / 16

Basic compressed algorithm

I Store a bit-string summary of characters for each node in the SLP.
I Use summaries to find next occurrence of characters in P.

v w

A B B A D D D D D C

Store 1101 Store 0011

I O(n + nσ
w + mh · occ) time and O(nσ

w) space, where h is the height
of the SLP.

7 / 16

New algorithm (1/2)
Heavy path decomposition of the SLP

I For production rule v = uw, the edge {v, u} is heavy if
|S(u)| ≥ |S(w)|, otherwise {v,w} is heavy.

I Creates a forest where trees are rooted in the leaves of the SLP –
the heavy forest.

I At most log N trees on any path from the root of the SLP to a leaf.

8 / 16

New algorithm (2/2)
Find first occurrence of P[i]

I Store summaries of characters to the left and right.
I Query for each tree on path:

I Find deepest node whose left hanging child (in the SLP) generates
P[i].

I Check if the root of the tree generates P[i].
I Find the highest node whose right hanging child (in the SLP)

generates P[i].

I O(n + nσ
w + p(n) + m log N · q(n) · occ) time and O(n + nσ

w + s(n))
space.

9 / 16

Tree color problem(s)
Problem and known solutions

Preprocess a colored tree T with t nodes to support first and last
colored ancestor queries.

I A first colored ancestor query FIRSTCOLOR(v, c) is the lowest
ancestor of v with color c.

I A last colored ancestor query LASTCOLOR(u, v, c) is the highest
node with color c on the path from u to v, where we always
assume that u is an ancestor of v.

Known solutions:

I q(t) = O(1) query time, s(t) = O(tσ) space, p(t) = O(tσ)
preprocessing time.

I q(t) = O(log w) query time, s(t) = O(t + D) space, p(t) = O(t + D)
preprocessing time.

I D = O(tσ) is the accumulated number of colors used.

10 / 16

Tree color problem(s)
Two level solution

I Convert T to a binary tree T′.
I Partition T′ into clusters.

I Clusters have size ≤ c · w for a constant c.
I Clusters have at most two boundary nodes.
I Tree comprised of boundary nodes has size O(t

w).

w = 4

11 / 16

Tree color problem(s)
Solution for tree comprised of boundary nodes

I Precompute solutions to FIRSTCOLOR queries.
I For each color c, store the tree consisting only of nodes with color

c.
I Build a levelled ancestor data structure for each induced colored

subtree.
I A LASTCOLOR(u, v, c) query:

I Let u′ = FIRSTCOLOR(u, c) and v′ = FIRSTCOLOR(v, c).
I LASTCOLOR(u, v, c) = LA(v′, depth(u′) + 1) in the subtree with

c-colored nodes.

u

v

I O(1) query time, O(tσ
w) space and preprocessing time.

12 / 16

Tree color problem(s)
Solution 1 for clusters

I Make a heavy path decomposition of T.
I For each node, store a bit-string summary of colors of ancestors on

heavy path.
I On each heavy path, store a bit-string summary of colors for

disjoint subpaths of length 2,4, . . . , t .

I A FIRSTCOLOR(v, c) query (LASTCOLOR queries are similar):
I Find deepest heavy path that contains c.
I Binary search for nearest c-colored node on path.

I O(log w) query time, O(tσ
w) space and preprocessing time.

13 / 16

Tree color problem(s)
Solution 2 for clusters

I Assign nodes post-order indices
I Store a bit-string Bc for each color c where Bc[v] = 1 ⇐⇒ v has

color c
I Store a bit-string Au for each node u where Au[v] = 1 ⇐⇒ v is an

ancestor of u
I A FIRSTCOLOR(v, c) query (LASTCOLOR queries are similar):

I Compute R = Bc AND Av.
I Find the index of the least significant set bit in R.

AND

=

A_v

B_c

R

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1

v

I O(1) query time, O(tσ
w) space, O(tσ

w log w) preprocessing time.
14 / 16

Summary

The packed tree color problem can be solved using s(t) = O(t + tσ
w)

space,

(i) q(t) = O(log w) query time and p(t) = O(t + tσ
w) preprocessing

time, or

(ii) q(t) = O(1) query time and p(t) = O(t + tσ
w log w) preprocessing

time.

Compressed subsequence matching can be solved using O(n + s(n))
words of space and time O(n + p(n) + m log N · q(n) · occ).

15 / 16

Summary

The packed tree color problem can be solved using s(t) = O(t + tσ
w)

space,

(i) q(t) = O(log w) query time and p(t) = O(t + tσ
w) preprocessing

time, or

(ii) q(t) = O(1) query time and p(t) = O(t + tσ
w log w) preprocessing

time.

Compressed subsequence matching can be solved using O(n + nσ
w)

words of space and time

(i) O(n + nσ
w + m log N log w · occ), or

(ii) O(n + nσ
w log w + m log N · occ).

16 / 16

