Repeats in strings

MAXIME CROCHEMORE

King's College London

Université Paris-Est

- \star String = text = word = sequence of symbols
- * **Repetition** = periodic string = power of exponent ≥ 2

- \star String = text = word = sequence of symbols
- * Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$ alfalfa = $(alf)^{7/3}$ entente = $(ent)^{7/3}$

- \star String = text = word = sequence of symbols
- ★ Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$ alfalfa = $(alf)^{7/3}$ entente = $(ent)^{7/3}$
- *** Repeat:** 1 < exponent < 2

$$\frac{\text{length} = 15}{\text{a b a a b c c c c c a b a a b}}$$

$$\overrightarrow{\text{period} = 10}$$

$$exponent = \frac{\text{length}}{\text{period}} = \frac{15}{10} = 1.5$$

- \star String = text = word = sequence of symbols
- * Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$ alfalfa = $(alf)^{7/3}$ entente = $(ent)^{7/3}$
- * **Repeat:** 1 < exponent < 2

abaab ccccc abaab = $(abaabccccc)^{15/10}$ restore = $(resto)^{7/5}$ all in all = $(all in)^{10/7}$

- \star String = text = word = sequence of symbols
- * Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$ alfalfa = $(alf)^{7/3}$ entente = $(ent)^{7/3}$
- * **Repeat:** 1 < exponent < 2

abaab ccccc abaab = $(abaabccccc)^{15/10}$ restore = $(resto)^{7/5}$ all in all = $(all in)^{10/7}$

***** Palindrome

abaab baaba

- \star String = text = word = sequence of symbols
- * Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$ alfalfa = $(alf)^{7/3}$ entente = $(ent)^{7/3}$
- *** Repeat:** 1 < exponent < 2

abaab ccccc abaab = $(abaabccccc)^{15/10}$ restore = $(resto)^{7/5}$ all in all = $(all in)^{10/7}$

***** Palindrome

abaab baaba CCAGA UUAAGGU UCUGG

Motivations

***** Pattern matching algorithms

String Matching, Time-space optimal String Matching: local and global periods, Indexing

***** Combinatorics on words

Avoidability of repetitions, Interaction between periods, Counting repetitions

***** Text Compression

Generalised run-length encoding, Dictionary-based compression

Motivations

***** Pattern matching algorithms

String Matching, Time-space optimal String Matching: local and global periods, Indexing

***** Combinatorics on words

Avoidability of repetitions, Interaction between periods, Counting repetitions

***** Text Compression

Generalised run-length encoding, Dictionary-based compression

***** Analysis of biological molecular sequences

Intensive study of satellites, Simple Sequence Repeats, or Tandem
Repeats in DNA sequences, Molecular structure prediction, Phylogenies

***** Analysis of music

Rhythm detection, Chorus location

Huntington's Disease mRNA in EMBL

```
ID
     L12392; SV 1; linear; mRNA; STD; HUM; 10348 BP.
. . .
     Homo sapiens Huntington's Disease (HD) mRNA, complete cds.
DE
XX
KW
     trinucleotide repeat.
XX
OS
     Homo sapiens (human)
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
OC
     Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
OC
     Homo.
XX
RN
     [1]
     1-10348
RP
RX
     PUBMED; 8458085.
RA
     MacDonald M., Ambrose C.M.;
RT
     "A novel gene containing a trinucleotide repeat that is expanded and
     unstable on Huntington's disease chromosomes. The Huntington's Disease
RT
RT
     Collaborative Research Group [see comments]";
R.L.
     Cell 72(6):971-983(1993).
. . .
```

11

atatcagtaa agagattaat tttaacgt

10348

 FT	 FQSVLEVVAAPGSPYHRLLTCLRNVHKVTTC"	
FT	polyA_site 10348	
FT	/gene="HD"	
XX		
SQ	Sequence 10348 BP; 2408 A; 2807 C; 2744 G; 2389 T; 0 other;	
	ttgctgtgtg aggcagaacc tgcggggggca ggggcgggct ggttccctgg ccagccattg	60
	gcagagtccg caggctaggg ctgtcaatca tgctggccgg cgtggccccg cctccgccgg	120
	cgcggccccg cctccgccgg cgcacgtctg ggacgcaagg cgccgtgggg gctgccggga	180
	cgggtccaag atggacggcc gctcaggttc tgcttttacc tgcggcccag agccccattc	240
	attgccccgg tgctgagcgg cgccgcgagt cggcccgagg cctccgggga ctgccgtgcc	300
	gggcgggaga ccgccATGgc gaccctggaa aagctgatga aggccttcga gtccctcaag	360
	tccttcCAGC AGCAGCAGCA GCAGCAGCAG CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG	420
	CAGCAGCAGC AACAGccgcc accgccgccg ccgccgccgc cgcctcctca gcttcctcag	480
	ccgccgccgc aggcacagcc gctgctgcct cagccgcagc cgcccccgcc gccgccccg	540

/protein_id="AAB38240.1" FT FΤ FT PPPPPQLPQPPPQAQPLLPQPQPPPPPPPPPPGPAVAEEPLHRPKKELSATKKDRVNH

CDS 316..9750 FT

. . .

. . .

Polyglutamine repetition

Avoiding repetitions

 * Theorem 1 ([Thue, 1906, 1912])
 There are infinite binary strings with no overlap (that is, no repetition of exponent > 2).
 There are infinite ternary strings with no square.

Avoiding repetitions

- * Theorem 2 ([Thue, 1906, 1912])
 There are infinite binary strings with no overlap (that is, no repetition of exponent > 2).
 There are infinite ternary strings with no square.
- ***** Iterated morphisms
 - no overlap in t:

$$\begin{cases} t(0) = 01, \\ t(1) = 10. \end{cases}$$

- no square in f:

$$egin{array}{l} f(\mathtt{a}) = \mathtt{a}\mathtt{b}\mathtt{c}, \ f(\mathtt{b}) = \mathtt{a}\mathtt{c}, \ f(\mathtt{c}) = \mathtt{b}. \end{array}$$

 $\mathbf{f}=f^\infty(\mathbf{a})=\texttt{abcacbabcbacabcacbacabcb}$.

Dejean's framework

- ***** Repetitive threshold
 - RT(a) = minimal rational r for which there exists an infiniteword on a letters whose maximal exponent of factors is r
- ***** Theorem 3

$$\begin{array}{l} \operatorname{RT}(2) &= 2 \\ \operatorname{RT}(3) &= 7/4 \\ \operatorname{RT}(4) &= 7/5 \\ \operatorname{RT}(k) &= k/(k-1) \end{array} \end{array}$$

***** Multi-author proof:

[Thue, 1906], [Dejean, 1972], [Pansiot, 1984], [Moulin-Ollagnier, 1992], [Carpi, 2007], [Rao, 2009], [Currie, Rampersad, 2009] How many squares in a word?

★ Proposition 1 ([Fraenkel, Simpson, 1998])
 No more than 2n primitively-rooted squares.

largest position of u^2 , v^2 , and w^2 in y? impossible!

How many squares in a word?

★ Proposition 2 ([Fraenkel, Simpson, 1998])
 No more than 2n primitively-rooted squares.

- * Direct proofs [Hickerson, 2004], [Ilie, 2005]
- * Best bounds: $2n \Theta(\log n)$ [Ilie, 2005], $\frac{95}{48}n$ [Lam, 2013], $\frac{11}{6}n$ [Deza, Franck, Thierry, 2014]
- * Computation in time $O(n \log a)$ [Gusfield, Stoye, 1999]
- ★ Proposition 3 ([C., 1981], [Gusfield, Stoye, 1999])
 Maximal number of occurrences of primitively-rooted
 squares : cn log n. Attained by Fibonacci words.

How few squares in a word?

- * Proposition 4 ([Fraenkel, Simpson, 1995]) There is an infinite binary word containing only 3 squares, 2 cubes, and no other repetition of exponent ≥ 2 .
- * Several other proofs: [Rampersad, Shallit, Wang, 2005], [Harju, Nowotka, 2006], [Badkobeh, C., 2010]

How few squares in a word?

- * Proposition 5 ([Fraenkel, Simpson, 1995]) There is an infinite binary word containing only 3 squares, 2 cubes, and no other repetition of exponent ≥ 2 .
- * Several other proofs: [Rampersad, Shallit, Wang, 2005], [Harju, Nowotka, 2006], [Badkobeh, C., 2010]
- *** Morphism** h_0 :

 $\begin{cases} h_0(\mathbf{a}) = \texttt{01001110001101}, \\ h_0(\mathbf{b}) = \texttt{0011}, \\ h_0(\mathbf{c}) = \texttt{000111}. \end{cases}$

 $\mathbf{h_0} = h_0(f^\infty(\mathbf{a}))$ contains:

- the 3 squares 00, 11, 1010
- the 2 cubes 000 and 111
- no other repetition of exponent ≥ 2

How few squares in a repetition-constrained word?

 ★ Theorem 4 ([Karhumäki, Shallit, 2004], [Shallit, 2008]) There is an infinite binary word avoiding 7/3⁺-powers with finitely many squares. 7/3 is the smallest such exponent.

How few squares in a repetition-constrained word?

- ★ Theorem 5 ([Karhumäki, Shallit, 2004], [Shallit, 2008]) There is an infinite binary word avoiding 7/3⁺-powers with finitely many squares. 7/3 is the smallest such exponent.
- * Theorem 6 ([Badkobeh, C., 2010])
 - ... with 12 squares, the fewest possible.
 - $\begin{cases} g(a) = abac, \\ g(b) = babd, \\ g(c) = eabdf, \\ g(d) = fbace, \\ g(e) = bace, \\ g(f) = abdf. \end{cases} \begin{array}{l} h(a) = 10011, \\ h(b) = 01100, \\ h(c) = 01001, \\ h(d) = 10110, \\ h(e) = 0110, \\ h(f) = 1001. \end{cases}$
- ★ $\mathbf{h} = h(g^{\infty}(\mathbf{a}))$ contains:
 - 12 squares, 2 7/3-powers (0110110 and 1001001)
 - no other repetition of exponent ≥ 2

Finite-Repetition Threshold

 ★ Finite-Repetition Thresholds for the binary alphabet [Badkobeh, 2010]

Maximal	Allowed number	Minimum number
exponent e	of e -powers	of squares
7/3	2	12
	1	14
5/2	2	8
	1	11
3	2	3
	1	4

Finite-Repetition Threshold

 ★ Finite-Repetition Thresholds for the binary alphabet [Badkobeh, 2010]

Maximal	Allowed number	Minimum number
exponent e	of e -powers	of squares
7/3	2	12
	1	14
5/2	2	8
	1	11
3	2	3
	1	4

* ... for three letters: FRt(3) = RT(3) = 7/4 with 2 7/4-powers

- * ... for four letters: FRt(4) = RT(4) = 7/5 with 2 7/5-powers
- * ... for five letters: FRt(5) = RT(5) = 5/4 with 60 5/4-powers
- * and $FRt(k) = RT(k), k \ge 6$ [Badkobeh, C., Rao, 2013]

Runs

* **Repetition** = periodic string = power: exponent ≥ 2

abaab abaab abaab ab $=(abaab)^{17/5}$

 \star Run = maximal periodicity = maximal occurrence of a repetition

Runs

* **Repetition** = periodic string = power: exponent ≥ 2

abaab abaab abaab ab $=(abaab)^{17/5}$

 \star Run = maximal periodicity = maximal occurrence of a repetition

Runs

* **Repetition** = periodic string = power: exponent ≥ 2

abaab abaab abaab ab $=(abaab)^{17/5}$

 \star Run = maximal periodicity = maximal occurrence of a repetition

..cfabaababaababaabababgk..

* Notion introduced by [Iliopoulos, Moore, Smyth, 1997]

How many runs in a string?

- \star Useful for any algorithm dealing with repetitions in string
- ★ Word of length 18 with 10 runs

* Theorem 7 ([Kolpakov, Kucherov, 1999]) There is no more than a linear number of runs in a string.

How many runs in a string?

- \star Useful for any algorithm dealing with repetitions in string
- ★ Word of length 18 with 10 runs

* Theorem 8 ([Kolpakov, Kucherov, 1999]) There is no more than a linear number of runs in a string.

Conjecture 1 (Kolpakov, Kucherov, 1999) A string contains less runs than its length

***** In binary strings:

 n
 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 runs(n)
 2 3 4 5 5 6 7 8 8 10 10 11 12 13 14

 n
 20 21 22 23 24 25 26 27 28 29 30 31

 runs(n)
 15 15 16 17 18 19 20 21 22 23 24 25

Known bounds on runs

- ***** Upper bounds
 - **5***n* [Rytter, 2006]
 - 3.44*n* [Rytter, 2007][Puglisi, Simpson, Smyth, 2007]
 - **1.6***n* [C., Ilie, 2007]
 - with computer verification
 - 1.29*n* for binary strings [Giraud, 2009]
 - 1.029*n* [C., Ilie, Tinta, 2008]

Known bounds on runs

- ***** Upper bounds
 - **5***n* [Rytter, 2006]
 - 3.44*n* [Rytter, 2007][Puglisi, Simpson, Smyth, 2007]
 - **1.6***n* [C., Ilie, 2007]

with computer verification

- 1.29*n* for binary strings [Giraud, 2009]
- 1.029*n* [C., Ilie, Tinta, 2008]
- ***** Lower bounds
 - $-\frac{3}{1+\sqrt{5}}n \approx 0.927n$ [Franck, Simpson, Smyth, 2003]
 - 0.94457564n

[Kusano, Matsubara, Ishino, Bannai, Shinohara, 2008]

- 0.944575712*n* [Simpson, 2009]

- ***** Maximal periodicities of exponent ≥ 3
- **\star Upper bound:** 0.5*n*. Lower bound: 0.406*n*

How many cubic runs in a string?

- ***** Maximal periodicities of exponent ≥ 3
- **\star Upper bound:** 0.5*n*. Lower bound: 0.406*n*
- ★ # occurrences of primitively-rooted cubes can be $\Omega(n \log n)$
- ***** No obvious relation with the number of (distinct) cubes:

baaacaaadaaaeaaaf..
$$\begin{cases} 1 & \text{cube} \\ n/4 & \text{runs} \end{cases}$$

abbaabbaabbaabba $\begin{cases} n/4 & \text{cubes} \\ 1 & \text{run} \end{cases}$

- \star the two (inter-)positions are associated with only one run
- ★ thus: no more than (n-1)/2 runs with exponent ≥ 3

Latest news on bounds on runs

- ***** Upper bounds
 - **5***n* [Rytter, 2006]
 - 3.44*n* [Rytter, 2007][Puglisi, Simpson, Smyth, 2007]
 - **1.6***n* [C., Ilie, 2007]
 - -1.5n

[Bannai, I, Inenaga, Nakashima, Takeda, Tsuruta, 2014]

with computer verification

- 1.29*n* for binary strings [Giraud, 2008]
- 1.029*n* [C., Ilie, Tinta, 2008]

\star 8 Runs in abaababbababb

0	1	2	3	4	5	6	7	8	9	10	11	12
a	b	a	a	b	a	b	b	a	b	a	b	b
• • • •	• • • •	• • • • •	••••									••••

Lyndon roots

0 1 2 3 4 5 6 7 8 9 10 11 12 a b a a b a b b a b a b b a b b

***** Their L-roots (a < b)

••••	••••					••••				•••••	•••••	
a	b	a	a	b	a	b	b	a	b	a	b	b
0	1	2	3	4	5	6	7	8	9	10	11	12

Lyndon roots

0 1 2 3 4 5 6 7 8 9 10 11 12 a b a a b a b b a b a b b

***** Their L-roots (a < b)

0	1	2	3	4	5	6	7	8	9	10	11	12
a	b	a	a	b	a	b	b	a	b	a	b	b
••••	••••	•		• • • •								••••

* L-roots in Lyndon word #abaababbabbabbb (# < a < b)

***** Standard factorisation:

any Lyndon word x is a letter or uniquely factorises into uvwhere u, v are Lyndon words and u < v

- ***** Standard factorisation:
 - any Lyndon word x is a letter or uniquely factorises into uvwhere u, v are Lyndon words and u < v
- $\star\,$ Leads to the Lyndon tree of a Lyndon word

 $\star\,$ Nodes are associated with Lyndon factors

- $\star\,$ Nodes are associated with Lyndon factors
- $\star \ \ldots$ but some L-roots do not correspond to any internal node

- $\star\,$ Nodes are associated with Lyndon factors
- $\star \ \ldots$ but some L-roots do not correspond to any internal node

- $\star\,$ Nodes are associated with Lyndon factors
- $\star \ \ldots$ but some L-roots do not correspond to any internal node

Use of Lyndon trees

- ★ Lyndon trees show: no more than 2.5n runs
 (n internal nodes in each tree and no more than 0.5n runs of period 1)
- ★ Theorem 9 ([Bannai et al., 2014])
 No more than 1.5 n runs in a string of length n.
- ***** On integer alphabet:
 - Lyndon tree constr. in linear time
 (Lyndon tree = Cartesian tree of ISA)
 - Constant time to check if an internal node corresponds to an L-root (with LCE and RMQ)
- \star Lyndon trees provide a new algorithm for locating runs

New conjecture

Conjecture 2 Each string interval contains no more Lyndon roots than its length.

 \star L-roots in abaababbababb

★ Properties of full words? Their lengths? factors accepting as many L-roots as their length

Computing repetitions in strings

***** Computing runs

 $O(n \log n)$ optimal time in the $\{=, \neq\}$ -comparison model [C., Kociumaka, Rytter, Toopsuwan, Tyczyński, Waleń, 2012] $O(n \log a)$ time [Kolpakov, Kucherov, 1999] O(n) on int. alph. [C., Ilie, 2008], [Bannai et al., 2014]

***** Computing local periods

 $O(n \log n)$ optimal time in the $\{=, \neq\}$ -comparison model $O(n \log a)$ time [Duval, Kolpakov, Kucherov, Lecroq, Lefebvre, 2004]

* Computing maximal-exponent factors $O(n \log a)$ time [Badkobeh, C., Toopsuwan, 2012]

Local periods

- ★ |w| is a local period of uv at position |u| if $w \neq \varepsilon$ and:
 - of u and w one is a suffix of the other
 - of v and w one is a prefix of the other

LP(|u|) =smallest local period

- a b a bb aa b a b b aa b a b ab b abbb ab ab b a b ab b a b a
- \star Local periods of ababba

position i	0	1	2	3	4	5	6
y[i]	a	b	a	b	b	a	
$\mathrm{LP}[i]$	1	2	2	5	1	3	1

Divide and conquer

\star String y = uv

★ LP[i] = local period at position i:

- initialised with the (global) period of $y \ldots$
- $-\ldots$ and at the ends of y
- updated each time i is in the middle of a run
- ★ Attention: avoid non-primitive roots and several detections of the same run
- ★ $O(n \log n)$ occurrences of primitively-rooted squares $\implies O(n \log n)$ time

* Computing runs having a full period in v, for each period length p

★ Maximal length r of common prefixes between v and v[p . . |v| - 1]: Prefixes_v[p]

- ★ Maximal length r of common prefixes between v and v[p . . |v| - 1]: Prefixes_v[p]
- ★ Maximal length ℓ of common suffixes between u and uv[0...p-1]: deduced from Prefixes_{$\tilde{u}\#\tilde{v}\tilde{u}$}

- ★ Maximal length r of common prefixes between v and v[p . . |v| - 1]: Prefixes_v[p]
- * Maximal length ℓ of common suffixes between u and uv[0...p-1]: deduced from $Prefixes_{\tilde{u}\#\tilde{v}\tilde{u}}$
- *** Linear-time precomputation of the two** Prefixes **tables**

- ★ Maximal length r of common prefixes between v and v[p . . |v| - 1]: Prefixes_v[p]
- * Maximal length ℓ of common suffixes between u and uv[0...p-1]: deduced from Prefixes_{$\tilde{u}\#\tilde{v}\tilde{u}$}
- *** Linear-time precomputation of the two** Prefixes **tables**
- ★ Run of period p if $l + r \ge p$ Constant time for each p and total linear time

Computing runs

- $\star~\mathbf{In}~O(n\log n)$ time with previous technique
- ★ Optimal in the {=, ≠}-model optimality is a consequence of [Main, Lorentz, 1979]
- $\star~\mathbf{In}~O(n\log a)$ time based on
 - modified Main's algorithm
 - f-factorisation (kind of Ziv-Lempel factorisation)
 - linear upper bound on the number of runs

[Kolpakov, Kucherov, 1998]

- $\star\,$ f-factorisation is the bottleneck
- ★ Linear-time solution on integer alphabet [C., Ilie, 2007]

Remembering the Past

"Who so neglects learning in his youth, loses the past and is dead for the future." Euripides (484 BC - 406 BC)

f-factorisation

- ★ Phrase = longest factor occurring before (LPF)
- **\star** Example of y = abaabababaababb

f-factorisation

- \star Phrase = longest factor occurring before (LPF)
- **\star** Example of y = abaabababaababb

* LZ77 [Ziv, Lempel, 1977] phrases are carefully encoded as

(distance to previous position, length)

- * Very efficient: many variants implemented in compress, gzip, PKzip, rzm, lzturbo, etc.
- * Computation in time $O(n \log a)$ (a = alphabet size)

Storing the Past: LPF table

***** Longest Previous Factor table

Storing the Past: LPF table

***** Longest Previous Factor table

- ★ Useful for optimising compression, computing repetitions, etc.
- * Same notion in [McCreight, 1976] and [Franek, Holub, Smyth, Xiao, 2003]
- ***** Linear-time computation with a Suffix Array

LPF from Suffix Array

- *** Integer alphabet:** sorting letters can be done in linear time
- ***** Suffix Array construction: suffix sorting + LCP
 - Linear-time suffix sorting by
 [Kärkkäinen, Sanders, 2003], [Ko, Aluru, 2003]
 [Kim, Sim, Park, Park, 2003], [Nong, Zhang, Chan, 2009]
 - Linear-time computation of LCP table by [Kasai, Lee, Arimura, Arikawa, Park, 2001]

LPF from Suffix Array

- *** Integer alphabet:** sorting letters can be done in linear time
- ***** Suffix Array construction: suffix sorting + LCP
 - Linear-time suffix sorting by
 [Kärkkäinen, Sanders, 2003], [Ko, Aluru, 2003]
 [Kim, Sim, Park, Park, 2003], [Nong, Zhang, Chan, 2009]
 - Linear-time computation of LCP table by [Kasai, Lee, Arimura, Arikawa, Park, 2001]
- ***** Computation of LPF table
 - total linear time + constant space
 - Possible fast implementation with permuted-LCP [Kärkkäinen, Manzini, Puglisi, 2009]
 - several variants (LPnF, LPrF)
 [C., Ilie, 2007], [C., Tischler, 2009], [Chairungsee, C., 2009], [C., Iliopoulos, Kubica, Rytter, Waleń, 2012],
 [C., Ilie, Iliopoulos, Kubica, Rytter, Waleń, 2013]

Maximal-Exponent Factors

- * Overlap-free string y of length n on a fixed alphabet Maximal exponent of all factors of y?
- ***** MEF: maximal-exponent factor occurring in y

* Related to Maximal Pairs

[Gusfield, 1997], [Brodal et al., 1999],
to Return words [Vuillon, 2001],
and to Closed words
[Fici, 2011], [Badkobeh, Fici, Lipták, 2013]

Maximal-Exponent Factors

- * Overlap-free string y of length n on a fixed alphabet Maximal exponent of all factors of y?
- ***** MEF: maximal-exponent factor occurring in y

- * Related to Maximal Pairs

 [Gusfield, 1997], [Brodal et al., 1999],
 to Return words [Vuillon, 2001],
 and to Closed words
 [Fici, 2011], [Badkobeh, Fici, Lipták, 2013]
- ***** Locating MEF occurrences in an overlap-free string?

Theorem 10 ([Badkobeh, C., Toopsuwan, 2012]) All the occurrences of maximal-exponent factors in an overlap-free string over a fixed alphabet can be listed in linear time.

Maximal exponent of factors of a word

- * y overlap-free \implies maximal exponent ≤ 2
- \star MEF: factor of the form uvu
- ***** Naive computation in $O(n^4)$
- * Use of the f-factorisation of y: $z_1 z_2 \dots z_\ell$

Maximal exponent of factors of a word

- ★ y overlap-free \implies maximal exponent ≤ 2
- \star MEF: factor of the form uvu
- **\star** Naive computation in $O(n^4)$
- * Use of the f-factorisation of y: $z_1 z_2 \dots z_\ell$

- $\mathbf{RT}(a) \Longrightarrow$ search for left occurrence of u in a bounded context. Essential use of the Suffix Automaton of $z_{i-1}z_i$
- overall time: $O(n \log a)$ [Badkobeh, C., Toopsuwan, 2012]
Counting MEF occurrences

★ δ -MEF: MEF whose border length satisfies $3\delta \leq b < 4\delta$.

- ***** then no more than one δ -MEF occ. in each δ interval
- * with $\Delta = \{1/3, 2/3, 1, 3/4, (3/4)^2, \ldots\}$ #MEF-occ $\leq \sum_{\delta \in \Delta} \frac{n}{\delta} = n\left(3 + \frac{3}{2} + 1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \ldots\right) < 8.5 n$

* Consequence: linear computation of all MEF occurrences Theorem 11 Less than 2.25 n occurrences of MEFs in a string of length n. There can be $2n/3 - \epsilon$ occurrences.

***** Approximation:

k =smallest number of changes to get a consensus period

		period	
x y	cag ctg cag	cag aag	аа ху
x y	cag c <mark>a</mark> g cag	cag cag	са ху

***** Approximation:

k =smallest number of changes to get a consensus period

		period		
x y	cag ctg cag	cag aag	аа ху	
х у	cag c <mark>a</mark> g cag	cag cag	саху	

 * Several other notions based on mismatches between potential periods and leading to different algorithms
 [Sim, Iliopoulos, Park, Smyth, 1999], [Landau, Schmidt, Sokol, 2001], [Kolpakov, Kucherov, 2003]

***** Approximation:

k =smallest number of changes to get a consensus period

		period					
x y	c a g	c t g	cag	cag	a a g	a a	ху
x y	cag	c a g	cag	cag	c a g	c a	ху

- * Several other notions based on mismatches between potential periods and leading to different algorithms
 [Sim, Iliopoulos, Park, Smyth, 1999], [Landau, Schmidt, Sokol, 2001], [Kolpakov, Kucherov, 2003]
- ***** k-MAR: maximal occ. of approx. runs with $\leq k$ changes
- * Solutions in [Amit, C., Landau, 2013]: using Parikh vectors: $O(n^2)$ time kangaroo jumps with Suffix Tree LCA queries + tuning: $O(nk^2 \log \frac{n}{k} \log k)$ time

Conclusion and open questions

- ★ Computing runs and local periods: $O(n \log n)$ optimal time in the $\{=, \neq\}$ -comparison model linear-time on an integer alphabet
- ★ Computing MEF occurrences, gapped palindromes: linear-time on a fixed alphabet

Conclusion and open questions

- ★ Computing runs and local periods: $O(n \log n)$ optimal time in the $\{=, \neq\}$ -comparison model linear-time on an integer alphabet
- ★ Computing MEF occurrences, gapped palindromes: linear-time on a fixed alphabet
- ★ Q: conjectures: number of runs, of squares. Less than n?
 Q: maximal number of MEF occurrences? Less than n?
- *** Q**: computing MEF occurrences on integer alphabet?
- ★ Q: faster *k*-MAR computation?
- * Q: is 2 the actual threshold exponent?
 Q: any other threshold?

Note: no more than $\frac{1}{\epsilon}n \ln n$ maximal periodicities of exponent more than $1 + \epsilon$ [Kolpakov, Kucherov, Ochem, 2010]

Collaborators

- \star On presented works
 - Mika Amit, University of Haifa
 - Golnaz Badkobeh, University of Sheffield
 - Supaporn Chairungsee, Walailak University
 - Lucian Ilie, University of Western Ontario
 - Costas Iliopoulos, King's College London
 - Tomasz Kociumaka, Warsaw University
 - Marcin Kubica, Warsaw University
 - Gad Landau, University of Haifa
 - Jakub Radoszewski, Warsaw University
 - Michaël Rao, ENS de Lyon
 - Wojciech Rytter, Warsaw University
 - German Tischler, Sanger Institute
 - Chalita Toopsuwan, King's College London
 - Wojciech Tyczyński, Warsaw University
 - Tomasz Waleń, Warsaw University