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Some types of repetitions

� String = text = word = sequence of symbols

� Repetition = periodic string = power of exponent ≥ 2

��

period = 5

a b a a b a b a a b a b a a b a b
��

length = 17

exponent = length
period = 17

5 = 3.4
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Some types of repetitions

� String = text = word = sequence of symbols

� Repetition = periodic string = power of exponent ≥ 2

abaab abaab abaab ab = (abaab)17/5

alfalfa = (alf)7/3 entente = (ent)7/3
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Some types of repetitions

� String = text = word = sequence of symbols

� Repetition = periodic string = power of exponent ≥ 2

abaab abaab abaab ab = (abaab)17/5

alfalfa = (alf)7/3 entente = (ent)7/3

� Repeat: 1 < exponent < 2

��

period = 10

a b a a b c c c c c a b a a b
��

length = 15

exponent = length
period = 15

10 = 1.5
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Some types of repetitions

� String = text = word = sequence of symbols

� Repetition = periodic string = power of exponent ≥ 2

abaab abaab abaab ab = (abaab)17/5

alfalfa = (alf)7/3 entente = (ent)7/3

� Repeat: 1 < exponent < 2

abaab ccccc abaab = (abaabccccc)15/10

restore = (resto)7/5 all in all = (all in )10/7
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Some types of repetitions

� String = text = word = sequence of symbols

� Repetition = periodic string = power of exponent ≥ 2

abaab abaab abaab ab = (abaab)17/5

alfalfa = (alf)7/3 entente = (ent)7/3

� Repeat: 1 < exponent < 2

abaab ccccc abaab = (abaabccccc)15/10

restore = (resto)7/5 all in all = (all in )10/7

� Palindrome
abaab baaba

CCAGA UUAAGGU UCUGG
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Motivations

� Pattern matching algorithms
String Matching, Time-space optimal String Matching: local and
global periods, Indexing

� Combinatorics on words
Avoidability of repetitions, Interaction between periods, Counting
repetitions

� Text Compression
Generalised run-length encoding, Dictionary-based compression
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Motivations

� Pattern matching algorithms
String Matching, Time-space optimal String Matching: local and
global periods, Indexing

� Combinatorics on words
Avoidability of repetitions, Interaction between periods, Counting
repetitions

� Text Compression
Generalised run-length encoding, Dictionary-based compression

� Analysis of biological molecular sequences
Intensive study of satellites, Simple Sequence Repeats, or Tandem
Repeats in DNA sequences, Molecular structure prediction, Phylo-
genies

� Analysis of music
Rhythm detection, Chorus location
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Huntington’s Disease mRNA in EMBL

ID L12392; SV 1; linear; mRNA; STD; HUM; 10348 BP.

...

DE Homo sapiens Huntington’s Disease (HD) mRNA, complete cds.

XX

KW trinucleotide repeat.

XX

OS Homo sapiens (human)

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;

OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;

OC Homo.

XX

RN [1]

RP 1-10348

RX PUBMED; 8458085.

RA MacDonald M., Ambrose C.M.;

RT "A novel gene containing a trinucleotide repeat that is expanded and

RT unstable on Huntington’s disease chromosomes. The Huntington’s Disease

RT Collaborative Research Group [see comments]";

RL Cell 72(6):971-983(1993).

...
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Polyglutamine repetition

...

FT CDS 316..9750

...

FT /protein_id="AAB38240.1"

FT /translation="MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQPPPPP

FT PPPPPPQLPQPPPQAQPLLPQPQPPPPPPPPPPGPAVAEEPLHRPKKELSATKKDRVNH

... ...

FT FQSVLEVVAAPGSPYHRLLTCLRNVHKVTTC"

FT polyA_site 10348

FT /gene="HD"

XX

SQ Sequence 10348 BP; 2408 A; 2807 C; 2744 G; 2389 T; 0 other;

ttgctgtgtg aggcagaacc tgcgggggca ggggcgggct ggttccctgg ccagccattg 60

gcagagtccg caggctaggg ctgtcaatca tgctggccgg cgtggccccg cctccgccgg 120

cgcggccccg cctccgccgg cgcacgtctg ggacgcaagg cgccgtgggg gctgccggga 180

cgggtccaag atggacggcc gctcaggttc tgcttttacc tgcggcccag agccccattc 240

attgccccgg tgctgagcgg cgccgcgagt cggcccgagg cctccgggga ctgccgtgcc 300

gggcgggaga ccgccATGgc gaccctggaa aagctgatga aggccttcga gtccctcaag 360

tccttcCAGC AGCAGCAGCA GCAGCAGCAG CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG 420

CAGCAGCAGC AACAGccgcc accgccgccg ccgccgccgc cgcctcctca gcttcctcag 480

ccgccgccgc aggcacagcc gctgctgcct cagccgcagc cgcccccgcc gccgcccccg 540

... ...

atatcagtaa agagattaat tttaacgt 10348

//
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Avoiding repetitions

� Theorem 1 ([Thue, 1906, 1912])
There are infinite binary strings with no overlap
(that is, no repetition of exponent > 2).
There are infinite ternary strings with no square.
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Avoiding repetitions

� Theorem 2 ([Thue, 1906, 1912])
There are infinite binary strings with no overlap
(that is, no repetition of exponent > 2).
There are infinite ternary strings with no square.

� Iterated morphisms

– no overlap in t: ⎧⎪⎨⎪⎩
t(0) = 01,
t(1) = 10.

t = t∞(0) = 011010011001011010010110 . .

– no square in f: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f(a) = abc,
f(b) = ac,
f(c) = b.

f = f∞(a) = abcacbabcbacabcacbacabcb . .
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Dejean’s framework

� Repetitive threshold
RT(a) = minimal rational r for which there exists an infinite
word on a letters whose maximal exponent of factors is r

� Theorem 3 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RT(2) = 2
RT(3) = 7/4
RT(4) = 7/5
RT(k) = k/(k − 1)

� Multi-author proof:
[Thue, 1906], [Dejean, 1972], [Pansiot, 1984],
[Moulin-Ollagnier, 1992], [Carpi, 2007],
[Rao, 2009], [Currie, Rampersad, 2009]
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How many squares in a word?

� Proposition 1 ([Fraenkel, Simpson, 1998])
No more than 2n primitively-rooted squares.

y

w w

v v

u u

largest position of u2, v2, and w2 in y? impossible!
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How many squares in a word?

� Proposition 2 ([Fraenkel, Simpson, 1998])
No more than 2n primitively-rooted squares.

y

w w

v v

u u

largest position of u2, v2, and w2 in y? impossible!

� Direct proofs [Hickerson, 2004], [Ilie, 2005]

� Best bounds: 2n − Θ(log n) [Ilie, 2005], 95
48
n [Lam, 2013],

11
6 n [Deza, Franek, Thierry, 2014]

� Computation in time O(n log a) [Gusfield, Stoye, 1999]

� Proposition 3 ([C., 1981], [Gusfield, Stoye, 1999])
Maximal number of occurrences of primitively-rooted
squares : cn log n. Attained by Fibonacci words.
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How few squares in a word?

� Proposition 4 ([Fraenkel, Simpson, 1995])
There is an infinite binary word containing only 3
squares, 2 cubes, and no other repetition of exponent ≥ 2.

� Several other proofs: [Rampersad, Shallit, Wang, 2005],
[Harju, Nowotka, 2006], [Badkobeh, C., 2010]
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How few squares in a word?

� Proposition 5 ([Fraenkel, Simpson, 1995])
There is an infinite binary word containing only 3
squares, 2 cubes, and no other repetition of exponent ≥ 2.

� Several other proofs: [Rampersad, Shallit, Wang, 2005],
[Harju, Nowotka, 2006], [Badkobeh, C., 2010]

� Morphism h0:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
h0(a) = 01001110001101,
h0(b) = 0011,
h0(c) = 000111.

h0 = h0(f
∞(a)) contains:

– the 3 squares 00, 11, 1010

– the 2 cubes 000 and 111

– no other repetition of exponent ≥ 2
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How few squares in a repetition-constrained word?

� Theorem 4 ([Karhumäki, Shallit, 2004], [Shallit, 2008])
There is an infinite binary word avoiding 7/3+-powers with
finitely many squares. 7/3 is the smallest such exponent.
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How few squares in a repetition-constrained word?

� Theorem 5 ([Karhumäki, Shallit, 2004], [Shallit, 2008])
There is an infinite binary word avoiding 7/3+-powers with
finitely many squares. 7/3 is the smallest such exponent.

� Theorem 6 ([Badkobeh, C., 2010])
. . . with 12 squares, the fewest possible.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(a) = abac,
g(b) = babd,
g(c) = eabdf,
g(d) = fbace,
g(e) = bace,
g(f) = abdf.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(a) = 10011,
h(b) = 01100,
h(c) = 01001,
h(d) = 10110,
h(e) = 0110,
h(f) = 1001.

� h = h(g∞(a)) contains:

– 12 squares, 2 7/3-powers (0110110 and 1001001)

– no other repetition of exponent ≥ 2
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Finite-Repetition Threshold

� Finite-Repetition Thresholds for the binary alphabet
[Badkobeh, 2010]

Maximal Allowed number Minimum number
exponent e of e-powers of squares

7/3 2 12
1 14

5/2 2 8
1 11

3 2 3
1 4
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Finite-Repetition Threshold

� Finite-Repetition Thresholds for the binary alphabet
[Badkobeh, 2010]

Maximal Allowed number Minimum number
exponent e of e-powers of squares

7/3 2 12
1 14

5/2 2 8
1 11

3 2 3
1 4

� . . . for three letters: FRt(3) = RT(3) = 7/4 with 2 7/4-powers

� . . . for four letters: FRt(4) = RT(4) = 7/5 with 2 7/5-powers

� . . . for five letters: FRt(5) = RT(5) = 5/4 with 60 5/4-powers

� and FRt(k) = RT(k), k ≥ 6 [Badkobeh, C., Rao, 2013]
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Runs

� Repetition = periodic string = power: exponent ≥ 2

abaab abaab abaab ab = (abaab)17/5

� Run = maximal periodicity = maximal occurrence of a
repetition

�

position i
�

center i + p

��
period p

. . c f a b a a b a b a a b a b a a b a b a a b a b g k . .

�= �=
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Runs

� Repetition = periodic string = power: exponent ≥ 2

abaab abaab abaab ab = (abaab)17/5

� Run = maximal periodicity = maximal occurrence of a
repetition

. .cfabaababaababaababaababgk. .
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Runs

� Repetition = periodic string = power: exponent ≥ 2

abaab abaab abaab ab = (abaab)17/5

� Run = maximal periodicity = maximal occurrence of a
repetition

. .cfabaababaababaababaababgk. .

� 10 runs in a a b b a a b b a a a b b a a a b b

repetitions = {aa, aaa, bb, (aabb)5/2, (aabba)14/5}

� Notion introduced by [Iliopoulos, Moore, Smyth, 1997]
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How many runs in a string?

� Useful for any algorithm dealing with repetitions in string

� Word of length 18 with 10 runs

a a b b a a b b a a a b b a a a b b

� Theorem 7 ([Kolpakov, Kucherov, 1999])
There is no more than a linear number of runs in a string.
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How many runs in a string?

� Useful for any algorithm dealing with repetitions in string

� Word of length 18 with 10 runs

a a b b a a b b a a a b b a a a b b

� Theorem 8 ([Kolpakov, Kucherov, 1999])
There is no more than a linear number of runs in a string.

Conjecture 1 (Kolpakov, Kucherov, 1999)
A string contains less runs than its length

� In binary strings:

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
runs(n) 2 3 4 5 5 6 7 8 8 10 10 11 12 13 14

n 20 21 22 23 24 25 26 27 28 29 30 31
runs(n) 15 15 16 17 18 19 20 21 22 23 24 25
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Known bounds on runs

� Upper bounds

– 5n [Rytter, 2006]

– 3.44n [Rytter, 2007][Puglisi, Simpson, Smyth, 2007]

– 1.6n [C., Ilie, 2007]

with computer verification

– 1.29n for binary strings [Giraud, 2009]

– 1.029n [C., Ilie, Tinta, 2008]
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Known bounds on runs

� Upper bounds

– 5n [Rytter, 2006]

– 3.44n [Rytter, 2007][Puglisi, Simpson, Smyth, 2007]

– 1.6n [C., Ilie, 2007]

with computer verification

– 1.29n for binary strings [Giraud, 2009]

– 1.029n [C., Ilie, Tinta, 2008]

� Lower bounds

– 3
1+

√
5
n ≈ 0.927n [Franek, Simpson, Smyth, 2003]

– 0.94457564n
[Kusano, Matsubara, Ishino, Bannai, Shinohara, 2008]

– 0.944575712n [Simpson, 2009]
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How many cubic runs in a string?

b a b a a a b a a a b a a a b b a a b b b b a

� Maximal periodicities of exponent ≥ 3

� Upper bound: 0.5n. Lower bound: 0.406n
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How many cubic runs in a string?

b a b a a a b a a a b a a a b b a a b b b b a

� Maximal periodicities of exponent ≥ 3

� Upper bound: 0.5n. Lower bound: 0.406n

� # occurrences of primitively-rooted cubes can be Ω(n log n)

� No obvious relation with the number of (distinct) cubes:

b a a a c a a a d a a a e a a a f . .
⎧⎪⎨⎪⎩
1 cube
n/4 runs

a b b a a b b a a b b a a b b a
⎧⎪⎨⎪⎩n/4 cubes
1 run
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Upper bound on cubic runs

0 n− 1
y

v v v

� �
� L-root: Lyndon root of run, smallest rotation of v
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Upper bound on cubic runs

0 n− 1
y

v v v

� �
w w w

impossible
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Upper bound on cubic runs

0 n− 1
y

v v v

� �

�′ �′
�′ largest rotation of v
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Upper bound on cubic runs

0 n− 1
y

v v v

� �

�′ �′

b a b a a a b a a a b a a a b b a a b b b b a
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Upper bound on cubic runs

0 n− 1
y

v v v

� �

�′ �′

b a b a a a b a a a b a a a b b a a b b b b a

� the two (inter-)positions are associated with only one run

� thus: no more than (n− 1)/2 runs with exponent ≥ 3
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Latest news on bounds on runs

� Upper bounds

– 5n [Rytter, 2006]

– 3.44n [Rytter, 2007][Puglisi, Simpson, Smyth, 2007]

– 1.6n [C., Ilie, 2007]

– 1.5n
[Bannai, I, Inenaga, Nakashima, Takeda, Tsuruta, 2014]

with computer verification

– 1.29n for binary strings [Giraud, 2008]

– 1.029n [C., Ilie, Tinta, 2008]
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Lyndon roots

� 8 Runs in abaababbababb

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b
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Lyndon roots

� 8 Runs in abaababbababb

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b

� Their L-roots (a < b)

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b
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Lyndon roots

� 8 Runs in abaababbababb

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b

� Their L-roots (a < b)

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b

� L-roots in Lyndon word #abaababbababb (# < a < b)

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

# a b a a b a b b a b a b b
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Lyndon tree

� Standard factorisation:
any Lyndon word x is a letter or uniquely factorises into uv
where u, v are Lyndon words and u < v
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Lyndon tree

� Standard factorisation:
any Lyndon word x is a letter or uniquely factorises into uv
where u, v are Lyndon words and u < v

� Leads to the Lyndon tree of a Lyndon word

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

# a b a a b a b b a b a b b

� Nodes are associated with Lyndon factors
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Lyndon tree

� Nodes are associated with Lyndon factors

� . . . but some L-roots do not correspond to any internal node

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

# a b a a b a b b a b a b b
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Lyndon tree

� Nodes are associated with Lyndon factors

� . . . but some L-roots do not correspond to any internal node

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

# a b a a b a b b a b a b b

# < a < b

# < b < a
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Lyndon tree

� Nodes are associated with Lyndon factors

� . . . but some L-roots do not correspond to any internal node

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

# a b a a b a b b a b a b b

# < a < b

# < b < a
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Use of Lyndon trees

� Lyndon trees show: no more than 2.5n runs
(n internal nodes in each tree and no more than 0.5n runs of period 1)

� Theorem 9 ([Bannai et al., 2014])
No more than 1.5n runs in a string of length n.

� On integer alphabet:

– Lyndon tree constr. in linear time
(Lyndon tree = Cartesian tree of ISA)

– Constant time to check if an internal node corresponds
to an L-root (with LCE and RMQ)

� Lyndon trees provide a new algorithm for locating runs
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New conjecture

Conjecture 2 Each string interval contains no more Lyndon
roots than its length.

� L-roots in abaababbababb

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b

3 L-roots

6 L-roots

7 L-roots

� Properties of full words? Their lengths?
factors accepting as many L-roots as their length
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Computing repetitions in strings

� Computing runs
O(n log n) optimal time in the {=, �=}-comparison model
[C., Kociumaka, Rytter, Toopsuwan, Tyczyński,
Waleń, 2012]
O(n log a) time [Kolpakov, Kucherov, 1999]
O(n) on int. alph. [C., Ilie, 2008], [Bannai et al., 2014]

� Computing local periods
O(n log n) optimal time in the {=, �=}-comparison model
O(n log a) time
[Duval, Kolpakov, Kucherov, Lecroq, Lefebvre, 2004]

� Computing maximal-exponent factors
O(n log a) time [Badkobeh, C., Toopsuwan, 2012]
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Local periods

� |w| is a local period of uv at position |u| if w �= ε and:

– of u and w one is a suffix of the other

– of v and w one is a prefix of the other

LP(|u|) = smallest local period

a b a b b a

b b

a b a b b a

b a b a

a b a b b a

b b a b a b b a b a

� Local periods of ababba

position i 0 1 2 3 4 5 6
y[i] a b a b b a

LP[i] 1 2 2 5 1 3 1
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Divide and conquer

� String y = uv

u v
i

w w w w w

w w w

� LP[i] = local period at position i:

– initialised with the (global) period of y . . .

– . . . and at the ends of y

– updated each time i is in the middle of a run

� Attention: avoid non-primitive roots
and several detections of the same run

� O(n log n) occurrences of primitively-rooted squares
=⇒ O(n log n) time
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Run in a product

� Computing runs having a full period in v,
for each period length p

u v
0 p
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Run in a product

� Computing runs having a full period in v,
for each period length p

u v
0 p

� �
r

� Maximal length r of common prefixes
between v and v[p . . |v| − 1]: Prefixesv[p]
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Run in a product

� Computing runs having a full period in v,
for each period length p

u v
0 p

� �
r� �

�

� Maximal length r of common prefixes
between v and v[p . . |v| − 1]: Prefixesv[p]

� Maximal length � of common suffixes
between u and uv[0 . . p− 1]: deduced from Prefixesũ#ṽũ

M.C. CPM Moscow 2014 26/36



Run in a product

� Computing runs having a full period in v,
for each period length p

u v
0 p

� �
r� �

�

� Maximal length r of common prefixes
between v and v[p . . |v| − 1]: Prefixesv[p]

� Maximal length � of common suffixes
between u and uv[0 . . p− 1]: deduced from Prefixesũ#ṽũ

� Linear-time precomputation of the two Prefixes tables
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Run in a product

� Computing runs having a full period in v,
for each period length p

u v
0 p

� �
r� �

�

w w w

� Maximal length r of common prefixes
between v and v[p . . |v| − 1]: Prefixesv[p]

� Maximal length � of common suffixes
between u and uv[0 . . p− 1]: deduced from Prefixesũ#ṽũ

� Linear-time precomputation of the two Prefixes tables

� Run of period p if � + r ≥ p
Constant time for each p and total linear time
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Computing runs

� In O(n logn) time with previous technique

� Optimal in the {=, �=}-model
optimality is a consequence of [Main, Lorentz, 1979]

� In O(n log a) time based on

– modified Main’s algorithm

– f-factorisation (kind of Ziv-Lempel factorisation)

– linear upper bound on the number of runs

[Kolpakov, Kucherov, 1998]

� f-factorisation is the bottleneck

� Linear-time solution on integer alphabet
[C., Ilie, 2007]
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Remembering the Past

PAST NOW FUTURE

event event event

“Who so neglects learning in his
youth, loses the past and is dead
for the future.”

Euripides (484 BC - 406 BC)
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f-factorisation

� Phrase = longest factor occurring before (LPF)

� Example of y = abaabababaaababb

a b a a b a b a b a a a b a b b

a b a a b a b a b a a a b a b b
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f-factorisation

� Phrase = longest factor occurring before (LPF)

� Example of y = abaabababaaababb

a b a a b a b a b a a a b a b b

a b a a b a b a b a a a b a b b

� LZ77 [Ziv, Lempel, 1977]
phrases are carefully encoded as

(distance to previous position, length)

� Very efficient: many variants implemented in
compress, gzip, PKzip, rzm, lzturbo, etc.

� Computation in time O(n log a) (a = alphabet size)
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Storing the Past: LPF table

� Longest Previous Factor table

position i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
y[i] a b a a b a b a b b a b b b

LPF[i] 0 0 1 3 2 4 3 2 1 4 3 2 2 1

a b a a b a b a b b a b b b
7

a b a a b a b a b b a b b b
5
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Storing the Past: LPF table

� Longest Previous Factor table

position i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
y[i] a b a a b a b a b b a b b b

LPF[i] 0 0 1 3 2 4 3 2 1 4 3 2 2 1

a b a a b a b a b b a b b b
7

a b a a b a b a b b a b b b
5

� Useful for optimising compression, computing repeti-
tions, etc.

� Same notion in [McCreight, 1976]
and [Franek, Holub, Smyth, Xiao, 2003]

� Linear-time computation with a Suffix Array

M.C. CPM Moscow 2014 30/36



LPF from Suffix Array

� Integer alphabet: sorting letters can be done in linear time

� Suffix Array construction: suffix sorting + LCP

– Linear-time suffix sorting by
[Kärkkäinen, Sanders, 2003], [Ko, Aluru, 2003]
[Kim, Sim, Park, Park, 2003], [Nong, Zhang, Chan, 2009]

– Linear-time computation of LCP table by
[Kasai, Lee, Arimura, Arikawa, Park, 2001]
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LPF from Suffix Array

� Integer alphabet: sorting letters can be done in linear time

� Suffix Array construction: suffix sorting + LCP

– Linear-time suffix sorting by
[Kärkkäinen, Sanders, 2003], [Ko, Aluru, 2003]
[Kim, Sim, Park, Park, 2003], [Nong, Zhang, Chan, 2009]

– Linear-time computation of LCP table by
[Kasai, Lee, Arimura, Arikawa, Park, 2001]

� Computation of LPF table
– total linear time + constant space

– Possible fast implementation with permuted-LCP
[Kärkkäinen, Manzini, Puglisi, 2009]

– several variants (LPnF, LPrF)
[C., Ilie, 2007], [C., Tischler, 2009], [Chairungsee, C.,
2009], [C., Iliopoulos, Kubica, Rytter, Waleń, 2012],
[C., Ilie, Iliopoulos, Kubica, Rytter, Waleń, 2013]
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Maximal-Exponent Factors

� Overlap-free string y of length n on a fixed alphabet
Maximal exponent of all factors of y?

� MEF: maximal-exponent factor occurring in y

ab
u v u

� Related to Maximal Pairs
[Gusfield, 1997], [Brodal et al., 1999],
to Return words [Vuillon, 2001],
and to Closed words
[Fici, 2011], [Badkobeh, Fici, Lipták, 2013]
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Maximal-Exponent Factors

� Overlap-free string y of length n on a fixed alphabet
Maximal exponent of all factors of y?

� MEF: maximal-exponent factor occurring in y

ab
u v u

� Related to Maximal Pairs
[Gusfield, 1997], [Brodal et al., 1999],
to Return words [Vuillon, 2001],
and to Closed words
[Fici, 2011], [Badkobeh, Fici, Lipták, 2013]

� Locating MEF occurrences in an overlap-free string?

Theorem 10 ([Badkobeh, C., Toopsuwan, 2012]) All the oc-
currences of maximal-exponent factors in an overlap-free
string over a fixed alphabet can be listed in linear time.
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Maximal exponent of factors of a word

� y overlap-free =⇒ maximal exponent ≤ 2

� MEF: factor of the form uvu

� Naive computation in O(n4)

� Use of the f-factorisation of y: z1z2 . . . z�

– possible cases:
u v u

z1 z2 zi

u v u

z1 z2 zi−1 zi

– impossible case:
u v u

z1 z2 zi
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Maximal exponent of factors of a word

� y overlap-free =⇒ maximal exponent ≤ 2

� MEF: factor of the form uvu

� Naive computation in O(n4)

� Use of the f-factorisation of y: z1z2 . . . z�

– possible cases:
u v u

z1 z2 zi

u v u

z1 z2 zi−1 zi

– RT(a) =⇒ search for left occurrence of u in a bounded
context. Essential use of the Suffix Automaton of ˜zi−1zi

– overall time: O(n log a)
[Badkobeh, C., Toopsuwan, 2012]
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Counting MEF occurrences

y
i j

u′ v′ u′
u v u
w w w

��

< δ
��

> 2δ larger exponent

� δ-MEF: MEF whose border length satisfies 3δ ≤ b < 4δ.

� then no more than one δ-MEF occ. in each δ interval

� with Δ = {1/3, 2/3, 1, 3/4, (3/4)2, . . .}
#MEF-occ ≤ ∑

δ∈Δ
n
δ = n

(
3 + 3

2 + 1 + 3
4 +

(
3
4

)2
+ . . .

)
< 8.5n

� Consequence: linear computation of all MEF occurrences

Theorem 11 Less than 2.25n occurrences of MEFs in a string
of length n. There can be 2n/3− ε occurrences.
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Approximate runs

� Approximation:
k = smallest number of changes to get a consensus period

��
period

. . x y c a g c t g c a g c a g a a g a a x y . .
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Approximate runs

� Approximation:
k = smallest number of changes to get a consensus period

��
period

. . x y c a g c t g c a g c a g a a g a a x y . .

. . x y c a g c a g c a g c a g c a g c a x y . .

� Several other notions based on mismatches between poten-
tial periods and leading to different algorithms
[Sim, Iliopoulos, Park, Smyth, 1999], [Landau, Schmidt,
Sokol, 2001], [Kolpakov, Kucherov, 2003]
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Approximate runs

� Approximation:
k = smallest number of changes to get a consensus period

��
period

. . x y c a g c t g c a g c a g a a g a a x y . .

. . x y c a g c a g c a g c a g c a g c a x y . .

� Several other notions based on mismatches between poten-
tial periods and leading to different algorithms
[Sim, Iliopoulos, Park, Smyth, 1999], [Landau, Schmidt,
Sokol, 2001], [Kolpakov, Kucherov, 2003]

� k-MAR: maximal occ. of approx. runs with ≤ k changes

� Solutions in [Amit, C., Landau, 2013]:
using Parikh vectors: O(n2) time
kangaroo jumps with Suffix Tree LCA queries + tuning:
O(nk2 log n

k
log k) time
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Conclusion and open questions

� Computing runs and local periods:
O(n log n) optimal time in the {=, �=}-comparison model
linear-time on an integer alphabet

� Computing MEF occurrences, gapped palindromes:
linear-time on a fixed alphabet
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Conclusion and open questions

� Computing runs and local periods:
O(n log n) optimal time in the {=, �=}-comparison model
linear-time on an integer alphabet

� Computing MEF occurrences, gapped palindromes:
linear-time on a fixed alphabet

� Q: conjectures: number of runs, of squares. Less than n?
Q: maximal number of MEF occurrences? Less than n?

� Q: computing MEF occurrences on integer alphabet?

� Q: faster k-MAR computation?

� Q: is 2 the actual threshold exponent?
Q: any other threshold?

Note: no more than 1
ε
n lnn maximal periodicities of expo-

nent more than 1 + ε [Kolpakov, Kucherov, Ochem, 2010]
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