Local Search for String Problems: Brute Force is Essentially Optimal

Jiong Guo, Danny Hermelin, Christian Komusiewicz

Universität des Saarlandes, Ben-Gurion University, TU Berlin & Université de Nantes

CPM 2013
A local search problem Π consists of

- a set \mathcal{I} of **instances**,
- for each instance $I \in \mathcal{I}$ a set $F(I)$ of **feasible solutions**,
- an **objective function** $f : F(I) \to \mathbb{Z}$, and
- for each solution $s \in F(I)$ a **neighborhood** $N(s, I) \subseteq F(I)$.

Goal: Find **locally optimal** solution $s \in F(I)$ such that for all $s' \in N(s, I)$, $f(s) \leq f(s')$.

Generic local search algorithm:

1. $s := \text{“some element of } F(I) \text{”}$
2. **while** s is not locally optimal :
3. \quad find $s' \in N(s)$ with $f(s) < f(s')$
4. \quad $s := s'$
5. **return** s

Examples: k-Means, Simplex
Advantages of local search:
- fast in practice
- local optima often close to global optimum
- generic algorithm scheme \leadsto easy to implement

Tuning local search algorithms:
- faster convergence to local optimum
- changing type/size of neighborhood N

Theoretical analysis:
- number of iterations \leadsto
 - PLS-completeness [Johnson, Papadimitriou & Yannakakis, JCSS 1988],
 - Smoothed Analysis [Spielman & Teng, JACM 2004]
- efficiently searching the neighborhood N \leadsto
 - Parameterized Local Search
Example:

LS-TSP

Input: A set V of n cities, a distance matrix $d : V \times V \to \mathbb{Z}$, a tour T, and an integer k.

Question: Can we obtain a shorter tour T' by replacing $\leq k$ arcs of T?

Obvious: Solvable in $n^{O(k)}$ time

Aim: Improve running time to $f(k) \cdot \text{poly}(n)$

But: **LS-TSP** is $W[1]$-hard parameterized by k [Marx, ORL 2008]

\implies probably no $f(k) \cdot \text{poly}(n)$-time algorithm
Can we avoid brute-force $n^{O(k)}$ algorithms for searching the neighborhood?

General: Parameterized local search problems usually $W[1]$-hard with respect to the k-change neighborhood

[Fellows et al., JCSS, 2012]

Positive results for...

... restricted inputs:

- **LS-Feedback Arc Set** in tournaments [Fomin et al., AAAI 2010]
- **LS-TSP** on planar graphs [Guo et al., Algorithmica, to appear]

... other neighborhood types:

- **LS-TSP** with $\leq k$ swaps in an m-bounded range
 [Guo et al., Algorithmica, to appear]
- **LS-TSP** with maximum shift k [Balas, AOR 1999]
Can we avoid brute-force $n^{O(k)}$ algorithms for searching the neighborhood?

General: Parameterized local search problems usually W[1]-hard with respect to the k-change neighborhood

[Fellows et al., JCSS, 2012]

Positive results for...

... restricted inputs:

- **LS-Feedback Arc Set** in tournaments [Fomin et al., AAAI 2010]
- **LS-TSP** on planar graphs [Guo et al., Algorithmica, to appear],

... other neighborhood types:

- **LS-TSP** with $\leq k$ swaps in an m-bounded range [Guo et al., Algorithmica, to appear]
- **LS-TSP** with maximum shift k [Balas, AOR 1999]

How easy are string problems with respect to parameterized local search?
Can we avoid brute-force $n^{O(k)}$ algorithms for searching the neighborhood?

General: Parameterized local search problems usually W[1]-hard with respect to the k-change neighborhood

[Fellows et al., JCSS, 2012]

Positive results for...

... restricted inputs:

- **LS-Feedback Arc Set** in tournaments [Fomin et al., AAAI 2010]
- **LS-TSP** on planar graphs [Guo et al., Algorithmica, to appear],

... other neighborhood types:

- **LS-TSP** with $\leq k$ swaps in an m-bounded range [Guo et al., Algorithmica, to appear]
- **LS-TSP** with maximum shift k [Balas, AOR 1999]

How easy are **string** problems with respect to parameterized local search for the **Hamming distance neighborhood**?
Closest String

Input: Strings S_1, \ldots, S_m of length n over alphabet Σ, an integer d.

Question: Is there a string S of length n with Hamming distance $\leq d$ to each $S_i \in S$?

Known:

- **NP-hard** [Frances & Litmann, TOCS 1999]
- $O(d^{d+1} \cdot m + nm)$-time algorithm

 [Gramm, Niedermeier & Rossmanith, Algorithmica 2003]
- $f(m) \cdot \text{poly}(n)$-time algorithm

 [Gramm, Niedermeier & Rossmanith, Algorithmica 2003]
LS-Closest String

Input: Strings S_1, \ldots, S_m of length n over alphabet Σ, a string S with Hamming distance $\leq d$ to each $S_i \in S$, and $k \geq 0$.

Question: Is there a string S' of length n with Hamming distance

- $\leq k$ to S, and
- $< d$ to each $S_i \in S$?

$S_1 :=$ BAAAA
$S_2 :=$ CCACB
$S_3 :=$ ABBAC
LS-Closest String

Input: Strings S_1, \ldots, S_m of length n over alphabet Σ, a string S with Hamming distance $\leq d$ to each $S_i \in S$, and $k \geq 0$.

Question: Is there a string S' of length n with Hamming distance

- $\leq k$ to S, and
- $< d$ to each $S_i \in S$?

\[
\begin{align*}
S_1 & := \text{BAAAAA} & d_H(S, S_1) & = 4 \\
S_2 & := \text{CCACB} & d_H(S, S_2) & = 4 \\
S_3 & := \text{ABBAC} & d_H(S, S_3) & = 3 \\
S & := \text{BBBBBB} & k & = 2
\end{align*}
\]
LS-Closest String

Input: Strings S_1, \ldots, S_m of length n over alphabet Σ, a string S with Hamming distance $\leq d$ to each $S_i \in S$, and $k \geq 0$.

Question: Is there a string S' of length n with Hamming distance

- $\leq k$ to S, and
- $< d$ to each $S_i \in S$?

<table>
<thead>
<tr>
<th>S_1 := BAAAAA</th>
<th>$d_H(S, S_1) = 4$</th>
<th>$d_H(S', S_1) = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_2 := CCACB</td>
<td>$d_H(S, S_2) = 4$</td>
<td>$d_H(S', S_2) = 3$</td>
</tr>
<tr>
<td>S_3 := ABBAC</td>
<td>$d_H(S, S_3) = 3$</td>
<td>$d_H(S', S_3) = 3$</td>
</tr>
<tr>
<td>S := BBBBBB</td>
<td>$k = 2$</td>
<td>$d_H(S', S) = 2$</td>
</tr>
<tr>
<td>S' := BBAAB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LS-Closest String

Input: Strings S_1, \ldots, S_m of length n over alphabet Σ, a string S with Hamming distance $\leq d$ to each $S_i \in S$, and $k \geq 0$.

Question: Is there a string S' of length n with Hamming distance

- $\leq k$ to S, and
- $< d$ to each $S_i \in S$?

S_1 := BAAAAA	$d_H(S, S_1) = 4$	$d_H(S', S_1) = 2$
S_2 := CCACB	$d_H(S, S_2) = 4$	$d_H(S', S_2) = 3$
S_3 := ABBAC	$d_H(S, S_3) = 3$	$d_H(S', S_3) = 3$

| $S := BBBBBB$ | $k = 2$ | $d_H(S', S) = 2$ |
| $S' := BBAAB$ |

Proposition: **LS-Closest String** can be solved in $d^k \cdot \text{poly}(n, m)$ time.

Proof by *parameterized reduction* from **Multicolored Hitting Set**

Input: A hypergraph $G = (V, E)$ and vertex-coloring $c : V \rightarrow \{1, \ldots, k\}$.

Question: Is there a size-k set $V' \subseteq V$ such that

- $V' \cap E \neq \emptyset$ for all $E \in E$, and
- V' is colorful?

Known: **Multicolored Hitting Set** parameterized by k is $W[2]$-hard
Parameterized Reduction:

\[(l, k) \xrightarrow{A} (l', k')\]

\((l, k)\) is a yes-instance \iff \((l', k')\) is a yes-instance

- \(A\) runs in \(f(k) \cdot \text{poly}(|l|)\) time
- \(k' \leq g(k)\)

A parameterized reduction from a \(W[t]\)-hard problem \(L\) to a problem \(L'\) shows \(W[t]\)-hardness of \(L'\)
\[V = \{1, 2, 3, 4, 5, 6\} \]
\[E = \{E_1, E_2, E_3, E_4\} \]

\[E_1 = \{1, 2, 3\} \quad E_2 = \{4, 6\} \quad E_3 = \{1, 6\} \quad E_4 = \{3, 5\} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{E_1})</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(S_{E_2})</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>(S_{E_3})</td>
<td>R</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(S_{E_4})</td>
<td>X</td>
<td>X</td>
<td>R</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
</tbody>
</table>
\[V = \{1, 2, 3, 4, 5, 6\} \]
\[\mathcal{E} = \{E_1, E_2, E_3, E_4\} \]
\[E_1 = \{1, 2, 3\} \quad E_2 = \{4, 6\} \quad E_3 = \{1, 6\} \quad E_4 = \{3, 5\} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{E_1})</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(S_{E_2})</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>B</td>
</tr>
<tr>
<td>(S_{E_3})</td>
<td>R</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>B</td>
</tr>
<tr>
<td>(S_{E_4})</td>
<td>X</td>
<td>X</td>
<td>R</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>(S_R)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>(S_B)</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>(S_O)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
\[V = \{1, 2, 3, 4, 5, 6\} \]
\[\mathcal{E} = \{E_1, E_2, E_3, E_4\} \]
\[E_1 = \{1, 2, 3\} \quad E_2 = \{4, 6\} \quad E_3 = \{1, 6\} \quad E_4 = \{3, 5\} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{E_1})</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(S_{E_2})</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>B</td>
</tr>
<tr>
<td>(S_{E_3})</td>
<td>R</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>B</td>
</tr>
<tr>
<td>(S_{E_4})</td>
<td>X</td>
<td>X</td>
<td>R</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>(S_R)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>(S_B)</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>(S_O)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>(S)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
\[V = \{1, 2, 3, 4, 5, 6\} \]
\[E = \{E_1, E_2, E_3, E_4\} \]

\[E_1 = \{1, 2, 3\} \quad E_2 = \{4, 6\} \quad E_3 = \{1, 6\} \quad E_4 = \{3, 5\} \]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \mid V \\
S_{E_1} & R & B & R & X & X & X & |V| \\
S_{E_2} & X & X & X & O & X & B & |V| \\
S_{E_3} & R & X & X & X & X & B & |V| \\
S_{E_4} & X & X & R & X & O & X & |V| \\
S_R & R & R & R & R & R & R & |V| \\
S_B & B & B & B & B & B & B & |V| \\
S_O & O & O & O & O & O & O & |V| \\
S & * & * & * & * & * & * & * \\
S' & R & * & * & * & O & B & \\
\end{array}
\]
For binary alphabet:

S_{E_1}	1	1	1	0	0	0	0	1
S_{E_2}	0	0	1	0	1	0	1	1
S_{E_3}	1	0	0	1	0	0	0	1
S_{E_4}	0	1	0	0	0	0	0	1
$S_{\{R,B,O\}}$	1	1	1	1	1	1	1	1
$S_{\{B,O\}}$	0	0	1	1	1	1	1	1
$S_{\{R,O\}}$	1	1	0	0	0	1	1	1
$S_{\{R,B\}}$	1	1	1	1	1	0	0	0
$S_{\{R\}}$	1	1	0	0	0	0	0	0
$S_{\{B\}}$	0	0	1	1	1	0	0	0
$S_{\{O\}}$	0	0	0	0	0	1	1	1

| S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| S' | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |

C. Komusiewicz (TU Berlin & Univ. Nantes) Closest String (Binary Alphabet)
LS-Closest String:

- NP-hard
- $W[2]$-hard for radius k of the Hamming neighborhood even in case $|\Sigma| = 2$
- no $n^{o(k)}$-time algorithm (assuming the Exponential Time Hypothesis)
- solvable in $d^k \cdot \text{poly}(n, m)$ time

Further results:

$W[1]$-hardness for radius k of the Hamming neighborhood for local search variants of

- Longest Common Subsequence
- Shortest Common Supersequence
- Shortest Common Superstring
LS-Longest Common Subsequence

Input: Strings T_1, \ldots, T_m over alphabet Σ, a string S that is a subsequence of each T_i, and integer k.

Question: Is there a letter $\sigma \in \Sigma$ and a string \tilde{S} of length $|S|$ such that $\tilde{S}\sigma$ is a subsequence of each string in τ and $d_H(\tilde{S}, S) \leq k$?

$$S_1 := \text{BCBAAACBA}$$
$$S_2 := \text{BCCACBAC}$$
$$S_3 := \text{CABBAC}$$
LS-Longest Common Subsequence

Input: Strings T_1, \ldots, T_m over alphabet Σ, a string S that is a subsequence of each T_i, and integer k.

Question: Is there a letter $\sigma \in \Sigma$ and a string \tilde{S} of length $|S|$ such that $\tilde{S}\sigma$ is a subsequence of each string in τ and $d_H(\tilde{S}, S) \leq k$?

$S_1 :=$ BCBAACBA

$S_2 :=$ BCCACBAC

$S_3 :=$ CABBAC

$S :=$ ABA, $k = 1$
LS-Longest Common Subsequence

Input: Strings T_1, \ldots, T_m over alphabet Σ, a string S that is a subsequence of each T_i, and integer k.

Question: Is there a letter $\sigma \in \Sigma$ and a string \tilde{S} of length $|S|$ such that $\tilde{S}\sigma$ is a subsequence of each string in τ and $d_H(\tilde{S}, S) \leq k$?

\[
S_1 := \text{BCBAAACBA} \\
S_2 := \text{BCCACBAC} \\
S_3 := \text{CABBAC}
\]

\[
S := \text{ABA, } k = 1 \\
\tilde{S}\sigma := \text{BBAC}
\]
LS-Longest Common Subsequence

Input: Strings T_1, \ldots, T_m over alphabet Σ, a string S that is a subsequence of each T_i, and integer k.

Question: Is there a letter $\sigma \in \Sigma$ and a string \tilde{S} of length $|S|$ such that $\tilde{S}\sigma$ is a subsequence of each string in τ and $d_H(\tilde{S}, S) \leq k$?

\[
\begin{align*}
S_1 := & \text{BCBAAACBA} \\
S_2 := & \text{BCCACBAC} \\
S_3 := & \text{CABBAC} \\
\hline
S := & \text{ABA}, \; k = 1 \\
\tilde{S}\sigma := & \text{BBAC}
\end{align*}
\]

Theorem: **LS-Longest Common Subsequence** with $|\Sigma| = O(1)$ is $W[1]$-hard for the radius k of the Hamming neighborhood.
So far: only negative results

Possible directions:

- other problems: **Multiple Sequence Alignment**, ...
- other neighborhood types: “shift”-based distances, insertions/deletions at arbitrary solution positions