Speeding up q-gram mining on grammar based compressed text

Kyushu University
○Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, Masayuki Takeda
Background: Processing large scale string data

- Data compression allows large scale string data to be stored compactly
Background: Processing large scale string data

- In order to process such data, we usually decompress them, which requires a lot of space and time.
In order to process such data, we usually decompress them, which requires a lot of space and time.
Background: Processing large scale string data

- In order to process such data, we usually decompress them, which requires a lot of space and time.
Background: Processing large scale string data

- One solution is to process compressed strings without explicit decompression.
Background: Processing large scale string data

- One solution is to process compressed strings without explicit decompression.
Grammar-Based Compressed String Processing

<table>
<thead>
<tr>
<th>Problem</th>
<th>Previous Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality Test</td>
<td>[Plandowski '94]; Lifshits '07]; [Schmidt-Schauss+ '09];</td>
</tr>
<tr>
<td>Pattern Match</td>
<td>[Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04], [Lifshits '06], [Gawrychowski '11]</td>
</tr>
<tr>
<td>Approximate Pattern Match</td>
<td>[Matsumoto+ '00]; [Navarro+ '01]</td>
</tr>
<tr>
<td>Subsequence Match</td>
<td>[Cegielski+ '00]; [Tiskin '09]; [Yamamoto+ '11]</td>
</tr>
<tr>
<td>Longest Common Subsequence / Edit Distance</td>
<td>[Tiskin '07, '08]; [Hermelin + '09, ’11]</td>
</tr>
<tr>
<td>Pattern Discovery</td>
<td>[Inenaga+ ’09]; [Matsubara+ ’09]</td>
</tr>
<tr>
<td>q-gram Frequencies</td>
<td>[Goto+ ’11]; [Goto+ ’12]</td>
</tr>
</tbody>
</table>
Grammar-Based Compressed String Processing

<table>
<thead>
<tr>
<th>Problem</th>
<th>Previous Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality Test</td>
<td>[Plandowski '94]; Lifshits '07]; [Schmidt-Schauss+ '09];</td>
</tr>
<tr>
<td>Pattern Match</td>
<td>[Karpinski+ '97], [Miyazaki+ '97], [Inenaga+ '04], [Lifshits '06], [Gawrychowski '11]</td>
</tr>
<tr>
<td>Approximate Pattern Match</td>
<td>[Matsumoto+ '00]; [Navarro+ '01]</td>
</tr>
<tr>
<td>Subsequence Match</td>
<td>[Cegielski+ '00]; [Tiskin '09]; [Yamamoto+ '11]</td>
</tr>
<tr>
<td>Longest Common Subsequence / Edit Distance</td>
<td>[Tiskin '07, '08]; [Hermelin + '09, '11]</td>
</tr>
<tr>
<td>Pattern Discovery</td>
<td>[Inenaga+ '09]; [Matsubara+ '09]</td>
</tr>
<tr>
<td>q-gram Frequencies</td>
<td>[Goto+ '11]; [Goto+ '12]</td>
</tr>
</tbody>
</table>
Main contribution

<table>
<thead>
<tr>
<th>q-gram Freq</th>
<th>Uncompressed String (SPIRE 2011)</th>
<th>SLP (This work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(</td>
<td>T</td>
<td>) = O(2^n)$ time and space</td>
</tr>
</tbody>
</table>

T: uncompressed string, n: the size of SLP

$\text{dup}(q, D)$: a quantity that represents the amount of redundancy that the SLP D captures with respect to q-grams

The algorithm is asymptotically always at least as fast and better in many cases compared to working on the uncompressed string.
Definition

Input: string \(T \), positive integer \(q \)

Output: \(\{(P, \text{Freq}(T, P)) \mid P \in \Sigma^q, \text{Freq}(T, P) > 0\} \)

where \(\text{Freq}(T, P) \) is the number of occurrences of \(P \) in \(T \)
\textit{q-gram frequencies problem}

Definition

Input: string T, positive integer q

Output: $\{(P, \text{Freq}(T, P)) \mid P \in \Sigma^q, \text{Freq}(T, P) > 0\}$

where $\text{Freq}(T, P)$ is \# occurrences of P in T

Example

$q = 3$

$T = \text{abaababaab}$
q-gram frequencies problem

Definition

Input: string \(T \), positive integer \(q \)

Output: \(\{ (P, \text{Freq}(T, P)) \mid P \in \Sigma^q, \text{Freq}(T, P) > 0 \} \)

where \(\text{Freq}(T, P) \) is # occurrences of \(P \) in \(T \)

Example

\[q = 3 \]

\[T = \text{abaababaab} \]

- aba
- aba
- aba
- aba
- bab
- bab
- aba
- aba
- baa
- aab
q-gram frequencies problem

Definition

Input: string T, positive integer q

Output: $\{(P, \text{Freq}(T, P)) \mid P \in \Sigma^q, \text{Freq}(T, P) > 0\}$

where $\text{Freq}(T, P)$ is # occurrences of P in T

Example $q = 3$

$T = \text{abaababaab}$

$F \text{req}(T, \text{"aba"}) = 3$
q-gram frequencies problem

Definition

Input: string T, positive integer q

Output: $\{(P, \text{Freq}(T, P)) \mid P \in \Sigma^q, \text{Freq}(T, P) > 0\}$

where $\text{Freq}(T, P)$ is # occurrences of P in T

Example

$q = 3$

$T = \text{abaababaab}$

$\text{Freq}(T, \text{“aba”}) = 3$

$\text{Freq}(T, \text{“baa”}) = 2$
q-gram frequencies problem

Definition

Input: string \(T \), positive integer \(q \)
Output: \(\{(P, \text{Freq}(T, P)) \mid P \in \Sigma^q, \text{Freq}(T, P) > 0\} \)

where \(\text{Freq}(T, P) \) is \# occurrences of \(P \) in \(T \)

Example \(q = 3 \)

\[
T = \text{abaababaab}
\]

\[
\begin{align*}
\text{Freq}(T, "aba") & = 3 \\
\text{Freq}(T, "baa") & = 2 \\
\text{Freq}(T, "aab") & = 2
\end{align*}
\]
q-gram frequencies problem

Definition

Input: string T, positive integer q

Output: $\{(P, Freq(T, P)) \mid P \in \Sigma^q, Freq(T, P) > 0\}$

where $Freq(T, P)$ is the number of occurrences of P in T

Example $q = 3$

$T = \text{abaababaab}$

- $Freq(T, \text{“aba”}) = 3$
- $Freq(T, \text{“baa”}) = 2$
- $Freq(T, \text{“aab”}) = 2$
- $Freq(T, \text{“bab”}) = 1$
Straight Line Program (SLP)

Definition

Straight Line Program is a context free grammar in the Chomsky normal form that derives a single string.

\[
X_1 = expr_1, X_2 = expr_2, \ldots, X_n = expr_n
\]

\[
expr_i \in \Sigma \text{ or } expr_i = X_l \cdot X_r (l, r < i)
\]

SLP can represent the output of well-known compression algorithms

- e.g. RE-PAIR, SEQUITUR, LZ78, LZW, LZ77, LZSS
Example of SLP

SLP: D

$X_1 = a$
$X_2 = b$
$X_3 = X_1 X_2$
$X_4 = X_1 X_3$
$X_5 = X_3 X_4$
$X_6 = X_4 X_5$
$X_7 = X_6 X_5$

$n = |D| = 7$

Derivation Tree of D

$T = \begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
a & a & b & a & b & a & b & a & b & a & b & a & b \\
\end{array}$
Example of SLP

SLP: \(D \)

\[
\begin{align*}
X_1 &= a \\
X_2 &= b \\
X_3 &= X_1 X_2 \\
X_4 &= X_1 X_3 \\
X_5 &= X_3 X_4 \\
X_6 &= X_4 X_5 \\
X_7 &= X_6 X_5
\end{align*}
\]

\(n = |D| = 7 \)

Derivation Tree of \(D \)

Length of the decompressed string can be \(\Theta(2^n) \)
Example of SLP

SLP: D

- $X_1 = a$
- $X_2 = b$
- $X_3 = X_1 X_2$
- $X_4 = X_1 X_3$
- $X_5 = X_3 X_4$
- $X_6 = X_4 X_5$
- $X_7 = X_6 X_5$

$n = |D| = 7$

Length of the decompressed string can be $\Theta(2^n)$
$O(qn)$ algorithm for q-gram frequencies problem on SLP

[Goto et al., SPIRE 2011]
Important Observation: stabbing

Definition

For $X_i = X_l X_r$, X_i stabs an occurrence of P \iff P starts in X_l and ends in X_r.
Important Observation: stabbing

Definition

For $X_i = X_l X_r$, X_i stabs an occurrence of $P \iff P$ starts in X_l and ends in X_r.

$q = 3$

$T = a\ a\ b\ a\ b\ a\ a\ \ b\ a\ a\ b\ a$
Important Observation: stabbing

Definition

For $X_i = X_l X_r$, X_i stabs an occurrence of P \iff P starts in X_l and ends in X_r.

$q = 3$

$T = \begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\text{a} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{b} & \text{b} \\
\end{array}$
Important Observation: stabbing

Definition

For $X_i = X_l X_r$, X_i stabs an occurrence of $P \iff P$ starts in X_l and ends in X_r.

Observation

For each occurrence of q-gram P, there exists a unique variable which stabs the occurrence of P.

$q = 3$
Important idea: counting stabbed occurrences

We can compute $Freq(T, P)$ by counting the number of occurrences of P stabbed by X_i, and summing them up for all X_i

$$Freq(T, P) = 2 \cdot 1 + 1 + 1$$

$q = 3$

$T = 1 \ a \ a \ b \ a \ b \ a \ a \ b \ a \ b \ a \ a \ b$
More formal description

Definition

For each variable X_i,
- $\text{Freq}_P(X_i, P)$: # occurrences of P stabbed by X_i in the string derived from X_i.
- $v\text{Occ}(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n.
More formal description

Definition

For each variable X_i,

- $Freq(X_i, P)$: # occurrences of P stabbed by X_i in the string derived from X_i.

- $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n.

串(Kushi): Japanese skewer, used to stab foods
More formal description

Definition

For each variable X_i,
- $Freq(X_i, P)$: # occurrences of P stabbed by X_i in the string derived from X_i.
- $vOcc(X_i)$: # nodes labeled by X_i in the derivation tree of the last variable X_n.

串 (Kushi):
Japanese skewer, used to stab foods

X_n
More formal description

Definition

For each variable X_i,
- $\text{Freq}(X_i, P) : \# \text{ occurrences of } P \text{ stabbed by } X_i \text{ in the string derived from } X_i$.
- $\text{vOcc}(X_i) : \# \text{ nodes labeled by } X_i \text{ in the derivation tree of the last variable } X_n$.

\[
\begin{align*}
\text{Freq}(X_i, P) &= 3, \\
\text{Freq}(X_j, P) &= 1, \\
\text{vOcc}(X_i) &= 2, \\
\text{vOcc}(X_j) &= 1.
\end{align*}
\]

Frequency of $P = 3 \cdot 2 + 1 \cdot 1 = 7$
More formal description

Definition

For each variable X_i,
- $Freq(X_i, P)$: \# occurrences of P stabbed by X_i in the string derived from X_i.
- $vOcc(X_i)$: \# nodes labeled by X_i in the derivation tree of the last variable X_n.

Lemma

$$Freq(T, P) = \sum_{i=1}^{n} Freq(X_i, P) \cdot vOcc(X_i)$$

$Freq(X_i, P) = 3$, $Freq(X_j, P) = 1$
$vOcc(X_i) = 2$, $vOcc(X_j) = 1$
Frequency of $P = 3 \cdot 2 + 1 \cdot 1 = 7$
Computing $Freq^\text{串}(X_i, P)$
Computing $Freq_{	ext{串}}(X_i, P)$

X_i stabs P \iff P starts in X_l and ends in X_r

q-grams stabbed by X_i
Computing $Freq(X_i, P)$

Observation

For any $P \in \Sigma^q$, $Freq(X_i, P) = Freq(t_i, P)$
Computing $Freq_{串}(X_i, P)$ by $Freq(t_i, P)$

Lemma

$$Freq(T, P) = \sum_{i=1}^{n} Freq(t_i, P) \cdot vOcc(X_i)$$

q-grams stabbed by X_i
Computing frequencies by $\text{Freq}(t_i, P)$ and $\nu\text{Occ}(X_i)$

Lemma

$$\text{Freq}(T, P) = \sum_{i=1}^{n} \text{Freq}(t_i, P) \cdot \nu\text{Occ}(X_i)$$

$O(n)$ time and space in total

$O(qn)$ time and space in total
Computing frequencies by $Freq(t_i, P)$ and $vOcc(X_i)$

Lemma

\[Freq(T, P) = \sum_{i=1}^{n} Freq(t_i, P) \cdot vOcc(X_i) \]

Theorem

SLP q-gram Frequencies Problem can be solved in $O(qn)$ time and space.

Sketch of proof:
Using the suffix array of the concatenation of all t_i's, we can compute all q-gram frequencies in $O(qn)$ time and space.
Efficiency & Inefficiency of $O(qn)$ algorithm

Total length of decompressed strings t_i

ENGLISH data of 200MB from pizza & chili corpus
Efficiency & Inefficiency of $O(qn)$ algorithm

ENGLISH data of 200MB from pizza & chili corpus

- when q is small, the algorithm runs faster
Efficiency & Inefficiency of $O(qn)$ algorithm

- when q is small, the algorithm runs faster
- when q is large, the algorithm runs slower

ENGLISH data of 200MB from pizza & chili corpus
New algorithm
New Algorithm

Inefficiency of $O(qn)$ algorithm

- Total length of decompressed strings t_i can be larger than $|T|$.

$$T = \begin{array}{cccccccc}
T_i = & a & a & b & a & b & a & b & a & b & a & a & b & a & a & b
\end{array}$$

$q = 3$
New Algorithm

Inefficiency of $O(qn)$ algorithm

- There are overlaps between partially decompressed strings t_i

$q = 3$

t_4 and t_6 overlap with “ab”
New Algorithm

Inefficiency of $O(qn)$ algorithm

There are overlaps between partially decompressed strings t_i

t_6 and t_5 overlap with “ab”
New Algorithm

Identifying the redundancies

- Consider all partially decompressed strings t_i in derivation tree
Removing overlaps of neighboring t_i’s

- Eliminate length-$(q-1)$ prefix of all t_i’s except for leftmost one
Removing overlaps of neighboring t_i’s

- Concatenation of remaining strings equals to T

$$T = \text{aababaababaab}$$
Removing duplicate t_i’s

- For all partially eliminated t_i, remove all but first occurrence
What we have left

- Compact representation of all t_i's

$q = 3$

$T = \text{a a b a b a a b a b a b a b}$
What we have left

- Compact representation of all t_i’s
New Algorithm

What we have left

- Compact representation of all t_i's

$q = 3$

$T = a\ b\ a\ b\ a\ b\ a\ a\ b\ a\ b\ a\ a\ b\ a\ b$

t_6
New Algorithm

What we have left

- Compact representation of all t_i's

$q = 3$

$T = \text{[sequence of symbols]}$

$t_5 \circ$
New Algorithm

What we have left

- Compact representation of all t_i's

$q = 3$

$T = a \ a \ b \ a \ b \ a \ a \ b \ a \ b \ b$

t_7
Neighbor tree

- Edge from X_i to $X_j \iff t_i$ and t_j are neighboring

$q = 3$

$T = \begin{array}{cccccccc}
\text{a} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{a} & \text{b} \\
\end{array}$
New Algorithm

Neighbor tree

- Edge from X_i to $X_j \Leftrightarrow t_i$ and t_j are neighboring
New Algorithm

Neighbor tree

- Edge from X_i to X_j $\iff t_i$ and t_j are neighboring

$$q = 3$$

![Diagram: Neighbor tree with nodes X_1 to X_7 connected by edges labeled with alphabet a and b. The string $T = ababaa$ is traversed through the tree.]
New Algorithm

Neighbor tree

- Edge from \(X_i \) to \(X_j \) ⇔ \(t_i \) and \(t_j \) are neighboring
Size of neighbor tree

- Edge from X_i to $X_j \iff t_i$ and t_j are neighboring

Lemma

The total length of edge labels in neighbor tree of G is

$$(q-1) + \sum \{|t_i| - (q-1) | |X_i| \geq q, i = 1, ..., n\}$$

$$= |T| - \text{dup}(q, D)$$

where $\text{dup}(q, D) = \sum \{(vOcc(X_i) - 1) \cdot (|t_i| - (q - 1)) | |X_i| \geq q, i = 1, \ldots, n\}$
Summary of Improved algorithm

Lemma

The neighbor tree from SLP D can be constructed in $O(\min\{qn, |T|\cdot \text{dup}(q, D)\})$
Summary of Improved algorithm

Lemma
The neighbor tree from SLP D can be constructed in $O(\min\{qn, |T|-\text{dup}(q, D)\})$

Lemma [Shibuya, 2003]
The suffix tree for a trie can be constructed in time linear in its size
Summary of Improved algorithm

Lemma

The neighbor tree from SLP D can be constructed in $O(\min\{qn, |T|\text{-}\text{dup}(q, D)\})$

Lemma [Shibuya, 2003]

The suffix tree for a trie can be constructed in time linear in its size.

Theorem

The q-gram frequencies problem on a SLP D of size n, representing string T can be solved in $O(\min\{qn, |T|\text{-}\text{dup}(q, D)\})$ time and space.
Example of ENGLISH data of 200MB from pizza & chili corpus

New Algorithm

Preliminary Experiment (ENGLISH 200MB)
size of neighbor tree and $\Sigma |t_i|$
Summary

<table>
<thead>
<tr>
<th>q-gram Freq</th>
<th>Uncompressed String (SPIRE 2011)</th>
<th>SLP (This work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(</td>
<td>T</td>
<td>) = O(2^n)$ time and space</td>
</tr>
</tbody>
</table>

Future work:
Other applications of neighbor tree
(e.g. one paper accepted to SPIRE 2012)