Cross-Document Pattern Matching

Gregory Kucherov¹ Yakov Nekrich² Tatiana Starikovskaya^{3,1}

¹Université Paris-Est & CNRS, ²University of Chile, ³Lomonosov Moscow State University.

Pattern Matching Problem

Given a text T and a pattern P, count all occurrences of P in T.

O(|P|) time, O(|T|) space

Cross-Document Pattern Matching Problem

Given a set of documents T_1, T_2, \ldots, T_m and a pattern $P = T_k[i..j]$, count all occurrences of P in T_{ℓ} .

Example

documents: genomic sequences pattern: a fragment of one of the sequences

Cross-Document Pattern Matching Problem

Given a set of documents T_1, T_2, \ldots, T_m and a pattern $P = T_k[i..j]$, count all occurrences of P in T_{ℓ} .

Standard solution: O(|P|) time, $O(|T_{\ell}|)$ space

Faster solution? Yes.

Variants

- Counting
- Reporting
- Document counting and reporting
- Dynamic counting and reporting

Variants

- Counting
- Reporting
- Document counting and reporting
- Dynamic counting and reporting

Counting

Given a set of documents T_1, T_2, \ldots, T_m and a pattern $P = T_k[i..j]$, count all occurrences of P in T_ℓ .

- 1) identify a position p of some occurrence of P in T_{ℓ}
- 2) find the locus of $T_{\ell}[p..p+|P|-1]$ in $ST(T_{\ell})$, and retrieve the number of leaves in its subtree

1) identify a position p of some occurrence of P in T_{ℓ}

 p_1, p_2 : starting positions of the closest to $\mathcal{T}_k[i..]$ suffixes of \mathcal{T}_ℓ

- $r_1 = select(\ell, rank(D[1..r-1], \ell))$
- $r_2 = select(\ell, rank(D[1..r-1], \ell) + 1)$

[Golynski et al. 2006] Rank and select queries on D can be supported in O(1) and $O(\log \log m)$ time respectively.

1) identify a position p of some occurrence of P in T_{ℓ}

 \Rightarrow Positions p_1 and p_2 can be computed in $O(\log \log m)$ time.

- P occurs at $p_1 \Leftrightarrow lcp(T_\ell[p_1..], T_k[i..]) \ge |P|$.
- Step 1 takes $O(\log \log m)$ time.

2) find the locus of $T_{\ell}[p..p+|P|-1]$ in $ST(T_{\ell})$, and retrieve the number of leaves in its subtree

weight(w): string depth of a node w w = wla(v, q): the ancestor of v of minimal depth s.t. weight(w) $\geq q$ u = wla(v, |P|)

Weighted Level Ancestor Problem

[Farach et al. 1996, Amir et al. 2007] w = wla(v, q) can be found in $O(\log \log W)$ time and linear space, where W is the maximal weight of a node in the tree.

Theorem

w = wla(v, q) can be found in $O(\min\{\sqrt{\log n_w} / \log \log n_w, \log \log q\})$ time and linear space.

2) find the locus of $T_{\ell}[p..p+|P|-1]$ in $ST(T_{\ell})$, and retrieve the number of leaves in its subtree

 $u = wla(v, |P|), n_u = occ$

 \Rightarrow *u* can be found in min{ $\sqrt{\log occ/\log \log occ}$, $\log \log |P|$ } time.

2) find the locus of $T_{\ell}[p..p+|P|-1]$ in $ST(T_{\ell})$, and retrieve the number of leaves in its subtree

Theorem

Counting takes $O(t + \log \log m)$ time and O(n) space, where $t = \min\{\sqrt{\log occ} / \log \log occ, \log \log |P|\}.$

Variants

- Counting
- Reporting
- Document counting and reporting
- Dynamic counting and reporting

Reporting

Given a set of documents $T_1, T_2, ..., T_m$ and a pattern $P = T_k[i..j]$, report all occurrences of P in T_ℓ .

- 1) identify a position p of T_{ℓ} at which P occurs Step 1 of Counting, takes $O(\log \log m)$ time
- 2) report all s: $lcp(T_{\ell}[p..], T_{\ell}[s..]) \ge |P|$

$$\Leftrightarrow \mathit{lcp}(\mathit{T}_{\ell}[p..], \mathit{T}_{\ell}[s..]) \geq |\mathsf{P}|$$

Reporting

Given a set of documents $T_1, T_2, ..., T_m$ and a pattern $P = T_k[i..j]$, report all occurrences of P in T_ℓ .

- 1) identify a position p of T_{ℓ} at which P occurs Step 1 of Counting, takes $O(\log \log m)$ time
- 2) report all s: $lcp(T_{\ell}[p..], T_{\ell}[s..]) \ge |P|$

 $\Leftrightarrow \mathit{lcp}(\mathit{T}_{\ell}[p..], \mathit{T}_{\ell}[s..]) \geq |\mathit{P}|$

Reporting: step 2

2) report all s:
$$lcp(T_{\ell}[p..], T_{\ell}[s..]) \ge |P|$$

$$SA(T_{\ell}) \longleftrightarrow T_{\ell}[p..] \mapsto$$

while $lcp(T_{\ell}[s..], T_{\ell}[p..]) \ge |P|$, report s

Theorem

Reporting takes $O(\log \log m + occ)$ time and O(n) space.

Variants

- Counting
- Reporting
- Document counting and reporting
- Dynamic counting and reporting

Document counting and reporting

Given a set of documents T_1, T_2, \ldots, T_m and a pattern $P = T_k[i..j]$, count or report all documents in which P occurs.

- 1) find u = locus(P) in the generalized suffix tree **Reduction to the WLA Problem** $O(\min\{\sqrt{\log docc} / \log \log docc, \log \log |P|\})$ time
- 2) report or count distinct documents in the subtree of u

Document counting and reporting

Given a set of documents T_1, T_2, \ldots, T_m and a pattern $P = T_k[i..j]$, count or report all documents in which P occurs.

 find u = locus(P) in the generalized suffix tree Reduction to the WLA Problem O(min{√log docc/log log docc, log log |P|}) time
 report or count distinct documents in the subtree of u

Document counting and reporting: step 2

2) report or count distinct documents in the subtree of $u \Leftrightarrow$ report or count distinct documents in the corresponding segment of the document array D

[Muthukrishnan 2002] Reporting of distinct documents in a segment of D takes O(ndocs) time and O(n) space.

Theorem

Document reporting takes O(t + ndocs) time and O(n) space, where $t = \min\{\sqrt{\log docc} / \log \log docc, \log \log |P|\}$.

[Bozanis et al. 1995] Counting of distinct documents in a segment of D takes $O(\log n)$ time and O(n) space.

Theorem

Document counting takes $O(\log n)$ time and O(n) space.

Variants

- Counting
- Reporting
- Document counting and reporting
- Dynamic counting and reporting

Dynamic counting and reporting

Given a set of documents T_1, T_2, \ldots, T_m and a pattern $P = T_k[i..j]$, count all occurrences of P in T_ℓ . Dynamic operation: adding a document.

- 1) find a position p of some occurrence of P in T_ℓ
- 2) find the locus of $T_{\ell}[p..p+|P|-1]$ in $ST(T_{\ell})$, and retrieve the number of leaves in its subtree

Dynamic counting and reporting

Given a set of documents T_1, T_2, \ldots, T_m and a pattern $P = T_k[i..j]$, count all occurrences of P in T_ℓ . Dynamic operation: adding a document.

1) find a position p of some occurrence of P in $T_{\ell} - O(\log n)$ time

Dynamic counting and reporting

Given a set of documents T_1, T_2, \ldots, T_m and a pattern $P = T_k[i..j]$, count all occurrences of P in T_ℓ . Dynamic operation: adding a document.

1) find a position p of some occurrence of P in $T_{\ell} - O(\log n)$ time

[Dietz et al. 1987] to compare ranks of any two leaves in O(1) time Suffix array of \mathcal{T}_ℓ

Summary of the results

m, n: the number of the documents and their total length resp.

- Counting: $O(\log \log m + \min\{\sqrt{\log occ}, \log \log |P|\})$ time
- Reporting: $O(\log \log m + occ)$ time
- Document counting: O(log n) time
- ► Document reporting: $O(\min{\{\sqrt{\log docc / \log \log docc}, \log \log |P|\}} + ndocs)$ time
- Dynamic counting: O(log n) time
- Dynamic reporting: O(log n + occ) time (update: O(log n) time per letter)

Summary of the results

m, n: the number of the documents and their total length resp.

- Counting: $O(\log \log m + \min\{\sqrt{\log occ} / \log \log occ, \log \log |P|\})$ time
- Reporting: $O(\log \log m + occ)$ time
- Document counting: O(log n) time
- ► Document reporting: $O(\min{\{\sqrt{\log docc / \log \log docc}, \log \log |P|\}} + ndocs)$ time
- Dynamic counting: O(log n) time
- Dynamic reporting: O(log n + occ) time
 (update: O(log n) time per letter)
- Succinct data structures for counting, reporting and document reporting