Affine Image Matching is TC^0-complete

Christian Hundt

Institut für Informatik, Universität Rostock, Germany

21.06.2010
The Image Matching Problem

Remember CPM08 and CPM09 ...
The Image Matching Problem

Affine Image Matching is TC^0-complete
The Image Matching Problem

Given:

\(F \)

Find:

\(f \in F \)

\(f(A) \)

Goal:

\(\Delta(f(A), B) \rightarrow \min \)

Christian Hundt

Affine Image Matching is \(\text{TC}^0 \)-complete
The Image Matching Problem

Given: F

Find: $f \in F$

Goal: $\Delta(f(A), B) \rightarrow \min$

Christian Hundt

Affine Image Matching is TC^0-complete
The Image Matching Problem

Given: any subimage B

image A

Goal: $\Delta(f(A), B) \rightarrow \min$

Affine Image Matching is TC^0-complete
The Image Matching Problem

Given: \(B \uparrow n \) \[\begin{array}{c} B \\ \uparrow n \end{array} \]

Find: \(f \in \mathcal{F} \) \[\begin{array}{c} f \in \mathcal{F} \\ \uparrow n \end{array} \]

\[\begin{array}{c} f(A) \\ \uparrow n \end{array} \]
The Image Matching Problem

Given: \(B \uparrow n \)

Find: \(f \in \mathcal{F} \quad f(A) \uparrow n \)

Goal: \(\Delta(f(A), B) \rightarrow \min \)

Affine Image Matching is \(\mathrm{TC}^0 \)-complete
$F(x, y) = (a_1a_2a_4a_5)x \cdot (x, y) + (a_3a_6)$

Christian Hundt

Affine Image Matching is TC^0-complete
Transformation Class – Affine Transformations

\[f(x, y) = \begin{pmatrix} a_1 & a_2 \\ a_4 & a_5 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a_3 \\ a_6 \end{pmatrix} \]
Consider \(D(A) = \{ f(A) \mid f \in \mathcal{F} \} \)
Discrete Problem

For $D(A)$ contains

These are only 1250 out of hundreds and thousands!
Consider all points

\[p = (a_1, a_2, a_3, a_4, a_5, a_6)^T \]

of the \(\mathbb{R}^6 \).
Consider all points \(p = (a_1, a_2, a_3, a_4, a_5, a_6)^T \) of the \(\mathbb{R}^6 \).

Every point stands for \(f \in \mathcal{F} \):
Consider all points

\[p = (a_1, a_2, a_3, a_4, a_5, a_6)^T \]

of the \(\mathbb{R}^6 \).

Every point stands for \(f \in \mathcal{F} \):

\[f(x, y) = \begin{pmatrix} a_1 & a_2 \\ a_4 & a_5 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a_3 \\ a_6 \end{pmatrix}. \]
There are hyperplanes

\[l_{ijk} : ia_1 + ja_2 + a_3 = k - 0.5 \]

\[J_{ijk} : ia_4 + ja_5 + a_6 = k - 0.5 \]
There are hyperplanes

\[l_{ijk} : ia_1 + ja_2 + a_3 = k - 0.5 \]
\[J_{ijk} : ia_4 + ja_5 + a_6 = k - 0.5 \]

for \(i, j \in \{-n, \ldots, n\} \) and
for \(k \in \{-n, \ldots, n+1\} \)
There are hyperplanes

\[l_{ijk} : i a_1 + j a_2 + a_3 = k - 0.5 \]
\[J_{ijk} : i a_4 + j a_5 + a_6 = k - 0.5 \]

for \(i, j \in \{-n, \ldots, n\} \) and for \(k \in \{-n, \ldots, n + 1\} \)

cutting \(\mathbb{R}^6 \) into a set \(\mathcal{A}_n \)
of convex regions.
Theorem

Let $\varphi \in \mathcal{A}_n$ and let

$$f(A) = f'(A)$$
Theorem

Let $\varphi \in A_n$ and let

$p = (a_1, \ldots, a_6)^T \in \varphi,
\quad p' = (a'_1, \ldots, a'_6)^T \in \varphi$
Theorem

Let $\varphi \in A_n$ and let $p = (a_1, \ldots, a_6)^T \in \varphi$, $p' = (a'_1, \ldots, a'_6)^T \in \varphi$ represent f and $f' \in \mathcal{F}$.
Theorem

Let \(\varphi \in A_n \) and let

\[
p = (a_1, \ldots, a_6)^T \in \varphi,
p' = (a'_1, \ldots, a'_6)^T \in \varphi
\]

represent \(f \) and \(f' \in \mathcal{F} \).

Then \(f(A) = f'(A) \).
Theorem

Let $\varphi \in \mathcal{A}_n$ and let

\[p = (a_1, \ldots, a_6)^T \in \varphi, \]
\[p' = (a'_1, \ldots, a'_6)^T \in \varphi \]

represent f and $f' \in \mathcal{F}$.

Then $f(A) = f'(A)$.

Theorem

$|\mathcal{A}_n| \in O(n^{18})$.
A sequential Affine Image Matching Algorithm [MFCS08]

Input: Images A and B of size n

Output: $f \in \mathcal{F}$ with minimum distortion $\Delta = (f(A), B)$

1.
2.
3.
4.
5.
6.
A sequential Affine Image Matching Algorithm [MFCS08]

Input: Images A and B of size n
Output: $f \in \mathcal{F}$ with minimum distortion $\Delta = (f(A), B)$

1. construct \mathcal{A}_n \hspace{2cm} $O(n^{18})$ time (Edelsbrunner '86)
2.
3.
4.
5.
6.
A sequential Affine Image Matching Algorithm [MFCS08]

Input: Images A and B of size n

Output: $f \in \mathcal{F}$ with minimum distortion $\Delta = (f(A), B)$

1. construct \mathcal{A}_n \hspace{1cm} $O(n^{18})$ time (Edelsbrunner ’86)
2. traverse all faces φ of \mathcal{A}_n \hspace{1cm} $O(n^{18})$ time (DFS)
3.
4.
5.
6.

It was open for a long time, whether Affine Image Matching is \text{TC}^0-complete.
A sequential Affine Image Matching Algorithm [MFCS08]

Input: Images A and B of size n
Output: $f \in \mathcal{F}$ with minimum distortion $\Delta = (f(A), B)$

1. construct \mathcal{A}_n \hspace{1cm} $O(n^{18})$ time (Edelsbrunner '86)
2. traverse all faces φ of \mathcal{A}_n \hspace{1cm} $O(n^{18})$ time (DFS)
3. find $p = (a_1, \ldots, a_6)^T \in \varphi$ \hspace{1cm} $O(1)$ time
4.
5.
6.

It was open for a long time, whether Affine Image Matching is TC0-complete.
A sequential Affine Image Matching Algorithm [MFCS08]

Input: Images A and B of size n
Output: $f \in \mathcal{F}$ with minimum distortion $\Delta = (f(A), B)$

1. construct \mathcal{A}_n \hspace{1cm} $O(n^{18})$ time (Edelsbrunner '86)
2. traverse all faces φ of \mathcal{A}_n \hspace{1cm} $O(n^{18})$ time (DFS)
3. find $p = (a_1, \ldots, a_6)^T \in \varphi$ \hspace{1cm} $O(1)$ time
4. get f from p and compute $f(A)$ \hspace{1cm} $O(1)$ time (amortized)

It was open for a long time, whether Affine Image Matching is \(\text{TC}^0 \)-complete.
A sequential Affine Image Matching Algorithm [MFCS08]

Input: Images A and B of size n

Output: $f \in \mathcal{F}$ with minimum distortion $\Delta = (f(A), B)$

1. construct \mathcal{A}_n
 $O(n^{18})$ time (Edelsbrunner ’86)
2. traverse all faces φ of \mathcal{A}_n
 $O(n^{18})$ time (DFS)
3. find $p = (a_1, \ldots, a_6)^T \in \varphi$
 $O(1)$ time
4. get f from p and compute $f(A)$
 $O(1)$ time (amortized)
5. obtain $\Delta = (f(A), B)$
 $O(1)$ time (amortized)
6.

It was open for a long time, whether Affine Image Matching is TC^0-complete.
A sequential Affine Image Matching Algorithm [MFCS08]

Input: Images A and B of size n
Output: $f \in \mathcal{F}$ with minimum distortion $\Delta = (f(A), B)$

1. **construct** \mathcal{A}_n \hspace{2cm} $O(n^{18})$ time (Edelsbrunner '86)
2. **traverse** all faces φ of \mathcal{A}_n \hspace{2cm} $O(n^{18})$ time (DFS)
3. **find** $p = (a_1, \ldots, a_6)^T \in \varphi$ \hspace{2cm} $O(1)$ time
4. **get** f from p and compute $f(A)$ \hspace{2cm} $O(1)$ time (amortized)
5. **obtain** $\Delta = (f(A), B)$ \hspace{2cm} $O(1)$ time (amortized)
6. **return** f with minimum distortion \hspace{2cm} $O(1)$ time

It was open for a long time, whether Affine Image Matching is TC^0-complete.

Christian Hundt
A sequential Affine Image Matching Algorithm [MFCS08]

Input: Images A and B of size n

Output: $f \in \mathcal{F}$ with minimum distortion $\Delta = (f(A), B)$

1. construct A_n $\quad O(n^{18})$ time (Edelsbrunner '86)
2. traverse all faces φ of A_n $\quad O(n^{18})$ time (DFS)
3. find $p = (a_1, \ldots, a_6)^T \in \varphi$ $\quad O(1)$ time
4. get f from p and compute $f(A)$ $\quad O(1)$ time (amortized)
5. obtain $\Delta = (f(A), B)$ $\quad O(1)$ time (amortized)
6. return f with minimum distortion $\quad O(1)$ time

overall time $\quad O(n^{18})$ time

It was open for a long time, whether Affine Image Matching is polynomial time solveable.
Recently raised Questions

1. What is the “exact” complexity class of Affine Image Matching?
2. To which degree can parallel computation speed-up Affine Image Matching?

Christian Hundt

Affine Image Matching is \(\text{TC}^0 \)-complete
Recently raised Questions

1. What is the “exact” complexity class of Affine Image Matching?
2. To which degree can parallel computation speed-up Affine Image Matching?
Theorem

Affine Image Matching is \(\text{TC}^0 \)-complete.
New Result

Theorem

Affine Image Matching is TC^0-complete.

$$\text{AC}^0 \subset \text{TC}^0 \subset \text{NC}^1 \subset \ldots \subset L \subset P$$
The Complexity Class TC^0

All functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ that can be computed by

1. a family of circuits $C_1, C_2, \ldots, C_n, \ldots$ that contain
2. and-gates, and
3. where every circuit has constant depth and
4. contains a polynomial number of gates.
The Complexity Class TC^0

All functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ that can be computed by

1. a family of circuits $C_1, C_2, \ldots, C_n, \ldots$ that contain
2. and-gates, and with unbounded fan-in and
3. where every circuit has constant depth and
4. contains a polynomial number of gates.

Christian Hundt
Affine Image Matching is TC^0-complete
The Complexity Class TC^0

All functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ that can be computed by

1. a family of circuits $C_1, C_2, \ldots, C_n, \ldots$ that contain
2. and-gates, and
3. majority-gates with unbounded fan-in and
4. where every circuit has constant depth and
5. contains a polynomial number of gates.
The Complexity Class TC^0

All functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ that can be computed by

1. a family of circuits $C_1, C_2, \ldots, C_n, \ldots$ that contain
2. and-gates, or-gates and
3. where every circuit has constant depth and
4. contains a polynomial number of gates.

\[C_5 \]

\[C_4 \]

\[C_3 \]

\[C_1, C_2 \]

\[C_6 \]

\[C_7, C_8 \]
All functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ that can be computed by

1. a family of circuits $C_1, C_2, \ldots, C_n, \ldots$ that contain
2. and-gates, or-gates and majority-gates with unbounded fan-in and
3. where every circuit has constant depth and
4. contains a polynomial number of gates.
The Complexity Class TC^0

All functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ that can be computed by

1. a family of circuits $C_1, C_2, \ldots, C_n, \ldots$ that contain
2. and-gates, or-gates and majority-gates with unbounded fan-in and
3. where every circuit has constant depth and
4. contains a polynomial number of gates.

\[C_5 \]

Affine Image Matching is TC^0-complete
The Complexity Class TC^0

All functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ that can be computed by

1. a family of circuits $C_1, C_2, \ldots, C_n, \ldots$ that contain
2. and-gates, or-gates and majority-gates with unbounded fan-in and
3. where every circuit has constant depth and
4. contains a polynomial number of gates.

Christian Hundt

Affine Image Matching is TC^0-complete
The Complexity Class TC^0

majority function (TC^0-complete)
The Complexity Class TC^0

- majority function (TC^0-complete)
- integer addition, multiplication (TC^0-complete), division (TC^0-complete), ...

However, it is unknown how A_n can be computed in TC^0.

Affine Image Matching is TC^0-complete
The Complexity Class TC^0

- majority function (TC^0-complete)
- integer addition, multiplication (TC^0-complete), division (TC^0-complete), ...
- repeated integer addition, i.e., \sum-operations (TC^0-complete)

However it is unknown how A_n can be computed in TC^0.

Affine Image Matching is TC^0-complete
The Complexity Class TC^0

- majority function (TC^0-complete)

- integer addition, multiplication (TC^0-complete), division (TC^0-complete), ...

- repeated integer addition, i.e., \sum-operations (TC^0-complete)

- integer minimum (TC^0-complete), integer sorting (TC^0-complete)
The Complexity Class TC^0

majority function (TC^0-complete)

integer addition, multiplication (TC^0-complete), division (TC^0-complete), …

repeated integer addition, i.e., \sum-operations (TC^0-complete)

integer minimum (TC^0-complete), integer sorting (TC^0-complete)

However it is unknown how A_n can be computed in TC^0.
A TC^0 Affine Image Matching Approach

To get $D(A)$...
A TC^0 Affine Image Matching Approach

To get $D(A)$:

the old algorithm processes all these points.
A \(\text{TC}^0 \) Affine Image Matching Approach

However, consider:

Definition

\(G_n \), the grid of points

\[
\begin{pmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5 \\
a_6 \\
\end{pmatrix} = 10^{-7} n^{-7} \begin{pmatrix} t_1 + 0.5 \\ t_2 \\ t_3 \\ t_4 \\ t_5 + 0.5 \\ t_6 \end{pmatrix}
\]

for all \(t_1, \ldots, t_6 \) in \(\{-10^{12} n^{13}, \ldots, 10^{12} n^{13}\} \).
Theorem

1. $|G_n| \in O(n^{78})$.
2. Every point $p = (a_1, \ldots, a_6) \in G_n$ fulfills $a_1a_5 \neq a_2a_4$.
3. For every $\varphi \in A_n$ there is a grid point p with $p \in \varphi$.

Christian Hundt

Affine Image Matching is TC^0-complete
A TC^0 Affine Image Matching Approach

Theorem

1. $|\mathcal{G}_n| \in O(n^{78})$.
2. Every point $p = (a_1, \ldots, a_6) \in \mathcal{G}_n$ fulfills $a_1a_5 \neq a_2a_4$.
3. For every $\varphi \in \mathcal{A}_n$ there is a grid point p with $p \in \varphi$.

Christian Hundt

Affine Image Matching is TC^0-complete
Theorem

1. $|\mathcal{G}_n| \in O(n^{78})$.
2. Every point $p = (a_1, \ldots, a_6) \in \mathcal{G}_n$ fulfills $a_1 a_5 \neq a_2 a_4$.
3. For every $\varphi \in \mathcal{A}_n$ there is a grid point p with $p \in \varphi$.

Christian Hundt

Affine Image Matching is TC^0-complete
Affine Image Matching is TC^0-complete.
A TC^0 Affine Image Matching Approach

\[\min f \text{ with minimum } \Delta(f_1(A), B), \Delta(f_2(A), B), \Delta(f_3(A), B), \ldots, \Delta(f_{|G_n|}(A), B) \]

essentially arithmetics, constant depth, $O(n^{78})$ times polynomially many processors

essentially repeated addition, constant depth, $O(n^{78})$ times polynomially many processors

Hence, Affine Image Matching is in TC^0.

Christian Hundt

Affine Image Matching is TC^0-complete
A \textbf{TC}^0 Affine Image Matching Approach

Affine Image Matching is \textbf{TC}^0-complete

essentially arithmetics, constant depth, $O(n^{78})$ times polynomially many processors

essentially repeated addition, constant depth, $O(n^{78})$ times polynomially many processors

minimum computation, constant depth, polynomially many processors

$\Delta(f_1(A), B)$

$\Delta(f_2(A), B)$

$\Delta(f_3(A), B)$

$\Delta(f_{|G_n|}(A), B)$

$\Delta(f_1(A), B)$

$\Delta(f_2(A), B)$

$\Delta(f_3(A), B)$

$\Delta(f_{|G_n|}(A), B)$

f with minimum $\Delta(f(A), B)$
Affine Image Matching Approach

\[\min f \text{ with minimum } \Delta(f(A), B) \]

\[\Delta(f_1(A), B), \Delta(f_2(A), B), \Delta(f_3(A), B), \ldots, \Delta(f_{|G_n|}(A), B) \]

\[f \text{ with minimum } \Delta(f(A), B) \]

Hence, Affine Image Matching is in TC^0.
The TC^0-completeness of Affine Image Matching

Consider the TC^0-complete problem

$$\text{Majority} = \left\{ s \in \{0, 1\}^* \mid \sum_{i=1}^{\left| s \right|} s_i \geq \left\lfloor \frac{|s|}{2} \right\rfloor \right\}$$
The TC^0-completeness of Affine Image Matching

string s

0 1 0 1 1 1 0
The TC^0-completeness of Affine Image Matching

Consider the TC^0-complete problem

Majority $= \{ s \in \{0,1\}^* \mid \sum_{i=1}^{\|s\|} s_i \geq \lfloor \|s\|/2 \rfloor \}$

string s

$0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0$

image A_s

$\Delta(f_{opt}(A_s), B_s) = \sum_{i=1}^{\|s\|} 1 - s_i$
The TC^0-completeness of Affine Image Matching

Consider the TC^0-complete problem

$$\text{Majority} = \{ s \in \{0, 1\}^* | \sum_{i=1}^{\text{|s|}} s_i \geq \lfloor \text{|s|}/2 \rfloor \}$$

for string s.

Image A_s:

Image B_s:

Affine Image Matching is TC^0-complete.
The TC^0-completeness of Affine Image Matching

String s is in Majority iff $\Delta(A_s, B_s) \leq \left\lfloor \frac{|s|}{2} \right\rfloor$.

\[
\Delta(A_s, B_s) = \sum_{i=1}^{\text{|s|}} 1 - s_i
\]
The TC^0-completeness of Affine Image Matching

Consider the TC^0-complete problem $\text{Majority} = \{ s \in \{0,1\}^* \mid \sum_{i=1}^{\lvert s \rvert} s_i \geq \lfloor \lvert s \rvert^2 \rfloor \}$

$\text{image } A_s$

$\text{image } f(A_s)$

$\text{image } B_s$

Christian Hundt

Affine Image Matching is TC^0-complete
The TC^0-completeness of Affine Image Matching

Consider the TC^0-complete problem

Majority $= \{ s \in \{0, 1\}^* | \sum_{i=1}^{|s|} s_i \geq \lfloor \frac{|s|}{2} \rfloor \}$

string s

0 1 0 1 1 1 0

image A_s

image B_s
The TC^0-completeness of Affine Image Matching

Consider the TC^0-complete problem

$$\text{Majority} = \{s \in \{0, 1\}^* \mid \sum_{i=1}^{\|s\|} s_i \geq \lfloor \|s\|^2 \rfloor\}$$

image A_s

image B_s

image $f_{opt}(A_s)$

String s

$0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0$

$$f_{opt}(x,y) \approx \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

$$a = \frac{16|s|}{16|s| - 7}$$
The TC^0-completeness of Affine Image Matching

Consider the TC^0-complete problem $\text{Majority} = \{s \in \{0, 1\}^* \mid \sum_{i=1}^{|s|} s_i \geq \lfloor |s|^2 \rfloor\}$ string s

image $f_{\text{opt}}(A_s)$

image B_s
The TC^0-completeness of Affine Image Matching

Consider the TC^0-complete problem $\text{Majority} = \{ s \in \{0,1\}^* \mid |\sum_{i=1}^{|s|} 1-s_i| \leq \left\lfloor \frac{|s|}{2} \right\rfloor \}$.

String s is in Majority iff $\Delta(f_{opt}(A_s), B_s) \leq \left\lfloor \frac{|s|}{2} \right\rfloor$.

<table>
<thead>
<tr>
<th>string s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 1 0</td>
</tr>
</tbody>
</table>

image $f_{opt}(A_s)$

image B_s

$$\Delta(f_{opt}(A_s), B_s) = \sum_{i=1}^{|s|} 1-s_i$$
The TC^0-completeness of Affine Image Matching

Consider the TC^0-complete problem

$$\text{Majority} = \{ s \in \{0, 1\}^* | \sum_{i=1}^{|s|} s_i \geq \lfloor |s|/2 \rfloor \}$$

For a string $s = 01011110$,

$$\Delta(f_{\text{opt}}(A_s), B_s) = \sum_{i=1}^{|s|} 1 - s_i$$

Because A_s and B_s can be computed easily, Affine Image Matching is hard in TC^0.

Christian Hundt
Conclusions

- New insights into the structure of affine image transformations.
 - Projective Image Matching is TC^0-complete.
 - TC^0-approach does not apply to weaker transformation classes in a straight-forward manner.
 - TC^0-hardness remains even for the weakest cases like Scaling or Rotation Image Matching.
Conclusions

- New insights into the structure of affine image transformations.
- Projective Image Matching is TC^0-complete.
 - TC^0-approach does not apply to weaker transformation classes in a straight-forward manner.
 - TC^0-hardness remains even for the weakest cases like Scaling or Rotation Image Matching.
Conclusions

- New insights into the structure of affine image transformations.
- Projective Image Matching is TC^0-complete.
- TC^0-approach does not apply to weaker transformation classes in a straight-forward manner.
- TC^0-hardness remains even for the weakest cases like Scaling or Rotation Image Matching.
Conclusions

- New insights into the structure of affine image transformations.
- Projective Image Matching is TC^0-complete.
- TC^0-approach does not apply to weaker transformation classes in a straight-forward manner.
- TC^0-hardness remains even for the weakest cases like Scaling or Rotation Image Matching.
End of Talk

Thank you for your attention!