Breakpoint distance and PQ-Trees (or: Comparing the Similarity of PQ-Trees Under the Breakpoint Distance)

Binhai Zhu

Computer Science Department
Montana State University

Joint work with Haitao Jiang and Cedric Chauve
Background

- Ancestral genome reconstruction is an important branch in computational genomics.

- In 1990, Wienberg et al. initiated a cytogenetic method (or, cross-species chromosome painting). The method can’t identify intrachromosomal rearrangements.

- Alternatively, Bourque and Pevzner (2002) applied a bioinformatics method based on parsimonious evolutionary events (like reversals, translocations, etc).
Background

● In 1990, Wienberg et al. initiated a cytogenetic method (or, cross-species chromosome painting). The method can’t identify intrachromosomal rearrangements.

● Alternatively, Bourque and Pevzner (2002) applied a bioinformatics method based on parsimonious evolutionary events (like reversals, translocations, etc).

● In 2006, Froenicke et al. pointed out that sometimes the two methods generate inconsistent results.
Background

- In 2006, Froenicke et al. pointed out that sometimes the two methods generate inconsistent results.

- Ma et al. (2006) proposed a method to identify orthologous genomic intervals conserved in ancestral genomes (called CAR---Contiguous Ancestral Region henceforth).

- While the above method is more effective, some level of divergence still existed. So Rocchi et al. (2006) called for a multidisciplinary method.

- All these ref's are from Genome Research.
In 2008, Chauve and Tannier proposed a general multidisciplinary model-free method. The input is a sequence of homologous genomic markers of extant genomes, together with a phylogenetic tree for these genomes. The output is a set of CARs stored in a PQ-tree. (Note that PQ-trees have been used in comparative genomics before.)

Typically, there are several different solutions, so it makes sense to investigate which solution is more compatible with others --- this is the motivation of this research.
PQ-Tree (Booth and Lueker, 1976)

- A plane rooted tree with 3 kinds of nodes: P-nodes, Q-nodes and leaves
PQ-Tree (Booth and Lueker, 1976)

- A plane rooted tree with 3 kinds of nodes: P-nodes, Q-nodes and leaves
PQ-Tree (Booth and Lueker, 1976)

- \(<6,7,8,5,3,4,1,2>\) can be generated by this tree, but \(<2,1,3,4,5,6,7,8>\) can’t.
Problems (only unichromosomal genomes are covered in the talk):

- Given a set \sum of n genes, stored in two such PQ-trees, how do we measure the similarity of these trees (in terms of whether they can generate `similar’ sequences)?
Problems (only unichromosomal genomes are covered in the talk):

- Given a set \sum of n genes, stored in two such PQ-trees, how do we measure the similarity of these trees (in terms of whether they can generate `similar’ sequences)?

- What if we are given one PQ-tree and a couple of permutations?
Problems (only unichromosomal genomes are covered in the talk):

- Given a set Σ of n genes, stored in two such PQ-trees, how do we measure the similarity of these trees (in terms of whether they can generate `similar' sequences)?

- What if we are given one PQ-tree and a couple of permutations?

- We will use breakpoint distance to measure similarity.
Distance Definitions

- We will focus on unsigned sequences in this talk, though our positive results can be extended to signed sequences as well.

- Given two permutations G and H, over the same set of markers (letters), if ab is a substring in G but neither ab nor ba is a substring in H, then ab constitutes a breakpoint in G.

Example, $G=abcdefg$

$$H=efgdcab \ (2 \text{ breakpoints})$$

- The number of breakpoints between G and H is called the breakpoint distance between G and H.
Formal Problem Definitions

(1) Minimum Breakpoint Permutations from PQ-trees (MBM-PQ):

Instance: PQ-tree T_1 and T_2, over the same set of markers, integer K.

Question: Can T_1 and T_2 generate permutations s_1 and s_2 such that $d(s_1, s_2) \leq K$?
Formal Problem Definitions

(1) Minimum Breakpoint Permutations from PQ-trees (MBM-PQ):

Result: NP-complete.

(2) p-Minimum Breakpoint Median from PQ-trees (p- MBM-PQ):

Instance: PQ-tree T and p permutations \(s_1, s_2, \ldots, s_p \) over the same set of markers, integer K.

Question: Can T generate a permutation s such that \(\sum_i d(s, s_i) \leq K \)?
Summary of Results:

(1) Minimum Breakpoint Permutations from PQ-trees (MBM-PQ):

Result: NP-complete.

(2) p-Minimum Breakpoint Median from PQ-trees (p-MBM-PQ):

Result: In FPT. (We focus on p=1 in the talk.)

Simulation result: Take 3 multi-chromosomal datasets, fuse them into 3 unichromosomal datasets, and run the FPT algorithm.
MBP-PQ is NP-complete

• IDEA: reduce X3C (Exact Cover by 3-Sets) to MBM-PQ.

• T_1 is a 5-level tree, with root being a Q-node. For each v_i, it encodes the info “v_i appears in S_j”.

• T_2 is a 6-level tree, with root being a Q-node. For each subtree of the root, it encodes the info “S_p contains v_i, v_j, v_k.”
MBP-PQ is NP-complete

- T_1 is a 5-level tree, with root being a Q-node. For each v_i, it encodes the info “v_i appears in S_j.”
MBP-PQ is NP-complete

• T_2 is a 6-level tree, with root being a Q-node. For each subtree of the root, it encodes the info “S_p contains v_i, v_j, v_k.”
MBP-PQ is NP-complete

- Formal and detailed arguments are omitted. A complete example is available as handout, or can be obtained by email upon request.
FPT algorithm for One-sided MBP-PQ and p-MBM-PQ

• Note that One-Sided MBP-PQ is really 1-MBM-PQ.

• We first present a hyper-graph representation G_1 of the input PQ-tree T_1.
FPT algorithm for One-sided MBP-PQ and p-MBM-PQ

• We first present a hyper-graph representation G_1 of the input PQ-tree T_1.

• The nodes in the graph are all (marker or super-) nodes in T_1 (except when the root is a P-node).

• Two nodes define an edge iff they are consecutive children of a Q-node.

• A vertex X could be contained in another node Z (this is why the graph is hyper).
FPT algorithm for One-sided MBP-PQ and p-MBM-PQ

- We first present a hyper-graph representation G_1 of the input PQ-tree T_1.

```
abc -> x
xy -> y
def -> f
```

```
a - b - c
x - y
d - e - f
```
FPT algorithm for One-sided MBP-PQ and p-MBM-PQ

- Now augment G_1 into G'_1 using the given permutation s_2.

s_2: xyfabcade
Now the problem is to delete red (blue in paper) edges such that we have paths left.
Lemma 5. Case 1.

$s_2: xyfabcde$
Lemma 5. Case 1.

\[a - b - c \quad x - y \quad d - e - f \]

\(s_2 : \text{xyfabcde} \)

\(G'_1 \)

Case 1
Lemma 5. Case 2: degree of a marker f is more than 2: allow at most 2 red edges connecting to f.

$s_2: xyfabcde$
• **Lemma 5. Case 3**: degree of a super-node X is more than 2: allow at most 2 red edges connecting to some markers in X.

\[s_2: \text{xyfabcade} \]
FPT algorithm for One-sided MBP-PQ and p-MBM-PQ

• With Lemma 5, we can easily have a bounded search tree algorithm.

• Let r be the maximum degree of a super-node, the size of the search tree is bounded by

$$f(K) = \binom{r}{r-2} f(K-(r-2)),$$

which is maximized when $r=3$, i.e.,

$$f(K) = 3f(K-1).$$
FPT algorithm for One-sided MBP-PQ and p-MBM-PQ

• With Lemma 5, we can easily have a bounded search tree algorithm.

• Let r be the maximum degree of a super-node, the size of the search tree is bounded by

$$f(K) = \binom{r}{r-2}f(K-(r-2)),$$

which is maximized when $r=3$.

That gives us an $O(3^Kn)$ time algorithm.
FPT algorithm for One-sided MBP-PQ and p-MBM-PQ

For practical datasets (at least the ones we have tried), a lot (in fact, the majority) of edges are deleted due to Case 1 in Lemma 5.

Let D be the number of such edges deleted (case 1 of Lemma 5), we really have an $O(3^{K-D}n)$ time algorithm.
FPT algorithm for One-sided MBP-PQ and p-MBM-PQ

For practical datasets (at least the ones we have tried), a lot of edges are deleted due to Case 1 in Lemma 5.

Let D be the number of such edges deleted (case 1 of Lemma 5), we really have an $O(3^{K-D}n)$ time algorithm.

Also, the algorithm can handle p-MBM-PQ for uni-chromosomal (multi-chromosomal) signed and unsigned permutations, for any fixed p.
Some Simulation Results

• We tried mammalian dataset, using 2-MBM-PQ for Node-I and Node-II.
• We tried mammalian dataset, using 2-MBM-PQ for Node-I and Node-II.

• The multi-chromosomal sequences are fused into one, the results are not really biological.
The multi-chromosomal sequences are fused into one, the results are not really biological.

The reason why it barely works for such a large K is when many edges are deleted following Case 1 of Lemma 5. That’s especially the case for the 3rd Yeast dataset, on which the root is a Q-node with 34 children.

Node I

- Human
- Macaca

Node II

- Mouse
- Rat
- Dog

K=69

K=108
The multi-chromosomal sequences are fused into one, the results are not really biological.

The reason why it barely works for such a large K is when many edges are deleted following Case 1 of Lemma 5. That’s especially the case for the 3rd Yeast dataset, on which the root is a Q-node with 34 children.
The multi-chromosomal sequences are fused into one, the results are not really biological.

The reason why it barely works for such a large K is when many edges are deleted following Case 1 of Lemma 5. That’s especially the case for the 3rd Yeast dataset, on which the root is a Q-node with 34 children.

The data and detailed simulation results can be found at http://www.cs.montana.edu/bhz/PQ-TREE.html
Conclusion and Open Problems

1. No approximate/exact solution is known for MBP-PQ. (How to build a graph from 2 PQ-trees?)

2. For p-MBM-PQ, the FPT algorithm is still not fast enough. Improvement?

3. Other distance measure (like DCJ)?