Dynamic Fully-Compressed Suffix Trees

Luís M. S. Russo Gonzalo Navarro Arlindo L. Oliveira

INESC-ID/IST
{lsl,aml}@algos.inesc-id.pt

Dept. of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

19th Annual Symposium on Combinatorial Pattern Matching
1 Motivation
 - The Problem We Studied
 - Previous Work and FCST’s
 - Fully-Compressed Suffix Tree Basics

2 Dynamic FCST’s
 - The problem
 - Dynamic CSA’s
 - Updating the sampling

3 Conclusions
 - Summary
Suffix trees are important for several string problems:

- pattern matching
- longest common substring
- super maximal repeats
- bioinformatics applications
- etc
Example (Suffix Tree for $abbbab$)

Luís M. S. Russo, Gonzalo Navarro, Arlindo L. Oliveira

Dynamic Fully-Compressed Suffix Trees
Problem (Suffix Trees need too much space)

Pointer based representations require $O(n \log n)$ bits.

This is much larger than the indexed string.
State of the art implementations require $[8, 10] n \log \sigma$ bits.
Sadakane proposed a way to represent compressed suffix trees, in $nH_k + 6n + o(n \log \sigma)$ bits.
A dynamic representation, by Chan et al., requires $nH_k + \Theta(n) + o(n \log \sigma)$ bits and suffers an $O(\log n)$ slowdown.
The Fully-Compressed suffix tree representation requires only \(nH_k + o(n \log \sigma) \) bits.

The representation uses the following scheme:

Fully-Compressed Suffix Tree

- Tree Structure
- Compressed Index
- Sampling
 - Nodes represented as intervals
 - LSA
We present dynamic FCST’s that require only $nH_k + o(n \log \sigma)$ bits with a $O(\log n)$ slowdown.
A node represented as an interval of leaves of a suffix tree.

Example

Interval [3, 6] represents node b.

\[
\begin{array}{c}
\text{A:} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
6 & 4 & 0 & 5 & 3 & 2 & 1 \\
\end{array}
\]
Compressed indexes are compressed representations of the leaves of a suffix tree. Their success relies on:

- **Succinct structures**, based on **RANK** and **SELECT**.
- **Data compression**, that represent T in $O(uH_k)$ bits.

Examples

- FM-index, Compressed Suffix Arrays, LZ-index, etc.

Sadakane used compressed suffix arrays. We need a compressed index that supports ψ and LF. For example the Alphabet-Friendly FM-Index.
Lemma

When $\text{LCA}(v, v') \neq \text{ROOT}$ we have that:

$$\text{SLINK} (\text{LCA}(v, v')) = \text{LCA}(\text{SLINK}(v), \text{SLINK}(v'))$$

This self-similarity explains why we can store only some nodes.
FCST’s use a sampling such that in any sequence

- \(v \)
- \(\text{SLINK}(v) \)
- \(\text{SLINK}(\text{SLINK}(v)) \)
- \(\text{SLINK}(\text{SLINK}(\text{SLINK}(v))) \)
- \(\ldots \)

of size \(\delta \) there is at least one sampled node.
Motivation Dynamic FCST’s Conclusions
The Problem Previous and FCST’s FCST basics
17 min

Fundamental lemma

Lemma

If \(\text{SLINK}^r(\text{LCA}(v, v')) = \text{ROOT} \), and let \(d = \min(\delta, r + 1) \).

Then \(\text{SDep}(\text{LCA}(v, v')) = \max_{0 \leq i < d} \{ i + \text{SDep}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v'))) \} \)

Proof.

\[
\begin{align*}
\text{SDep}(\text{LCA}(v, v')) & = i + \text{SDep}(\text{SLINK}^i(\text{LCA}(v, v'))) \\
& = i + \text{SDep}(\text{LCA}(\text{SLINK}^i(v), \text{SLINK}^i(v'))) \\
& \geq i + \text{SDep}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v'))) \\
\end{align*}
\]

The last inequality is an equality for some \(i \leq d \).
Lemma

If $\text{SLINK}^i(LCA(v, v')) = \text{ROOT}$, and let $d = \min(\delta, r + 1)$. Then $\text{SDEP}(LCA(v, v')) = \max_{0 \leq i < d} \{ i + \text{SDEP}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v'))) \}$

Proof.

$\text{SDEP}(LCA(v, v'))$

$= i + \text{SDEP}(\text{SLINK}^i(LCA(v, v')))$

$= i + \text{SDEP}(LCA(\text{SLINK}^i(v), \text{SLINK}^i(v')))$

$\geq i + \text{SDEP}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v')))$

The last inequality is an equality for some $i \leq d$.

Motivation Dynamic FCST's Conclusions

The Problem Previous and FCST's FCST basics

Luís M. S. Russo, Gonzalo Navarro, Arlindo L. Oliveira Dynamic Fully-Compressed Suffix Trees
Lemma

If $\text{SLINK}^i(LCA(v, v')) = \text{ROOT}$, and let $d = \min(\delta, r + 1)$. Then $\text{SDEP}(LCA(v, v'))$?

$$\max_{0 \leq i < d}\{i + \text{SDEP}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v'))))\}$$

Proof.

$$\text{SDEP}(LCA(v, v')) = i + \text{SDEP}(\text{SLINK}^i(LCA(v, v'))))$$

$$= i + \text{SDEP}(LCA(\text{SLINK}^i(v), \text{SLINK}^i(v'))))$$

$$\geq i + \text{SDEP}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v'))))$$

The last inequality is an equality for some $i \leq d$.
Lemma

If $\text{SLINK}^r(LCA(v, v')) = \text{ROOT}$, and let $d = \min(\delta, r + 1)$. Then $\text{SDEP}(LCA(v, v'))$?

$$\max_{0 \leq i < d} \{ i + \text{SDEP}(\text{LCSA} (\text{SLINK}^i(v), \text{SLINK}^i(v'))) \}$$

Proof.

$$\text{SDEP}(LCA(v, v'))$$

$$= i + \text{SDEP}(\text{SLINK}^i(LCA(v, v')))$$

$$= i + \text{SDEP}(LCA(\text{SLINK}^i(v), \text{SLINK}^i(v')))$$

$$\geq i + \text{SDEP}(\text{LCSA} (\text{SLINK}^i(v), \text{SLINK}^i(v')))$$

The last inequality is an equality for some $i \leq d$.
Lemma

If $\text{SLINK}^r(LCA(v, v')) = \text{ROOT}$, and let $d = \min(\delta, r + 1)$. Then $\text{SDEP}(LCA(v, v')) \geq \max_{0 \leq i < d} \{i + \text{SDEP}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v')))\}$

Proof.

\[
\text{SDEP}(LCA(v, v')) = i + \text{SDEP}(\text{SLINK}^i(LCA(v, v'))) = i + \text{SDEP}(\text{LCA}(\text{SLINK}^i(v), \text{SLINK}^i(v'))) \geq i + \text{SDEP}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v')))
\]

The last inequality is an equality for some $i \leq d$.
Lemma

If \(\text{SLINK}^r(LCA(v, v')) = \text{ROOT} \), and let \(d = \min(\delta, r + 1) \). Then \(\text{SDEP}(LCA(v, v')) = \max_{0 \leq i < d}\{i + \text{SDEP}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v'))))\} \)

Proof.

\[
\begin{align*}
\text{SDEP}(LCA(v, v')) &= i + \text{SDEP}(\text{SLINK}^i(LCA(v, v'))) \\
&= i + \text{SDEP}(LCA(\text{SLINK}^i(v), \text{SLINK}^i(v'))) \\
&\geq i + \text{SDEP}(\text{LCSA}(\text{SLINK}^i(v), \text{SLINK}^i(v'))) \\
\end{align*}
\]

The last inequality is an equality for some \(i \leq d \).
With the previous lemma FCST’s compute the following operations:

- \(\text{SDEP}(v) = \text{SDEP}(\text{LCA}(v, v)) = \max_{0 \leq i < d} \{ i + \text{SDEP}(\text{LCSA}(\psi^i(v_l), \psi^i(v_r))) \} \).

- \(\text{LCA}(v, v') = \text{LF}(v[0..i - 1], \text{LCSA}(\psi^i(\min\{v_l, v'_l\}), \psi^i(\max\{v_r, v'_r\}))) \), for the \(i \) in the lemma.

- \(\text{SLINK}(v) = \text{LCA}(\psi(v_l), \psi(v_r)) \)
Problem (FCST’s are static)

How to insert or remove a text T from a FCST that is indexing a collection C of texts?

- Use Weiner’s algorithm or delete suffixes from the largest to the biggest.
- Update the CSA and the sampling.
Problem (FCST’s are static)

How to insert or remove a text T from a FCST that is indexing a collection C of texts?

- Use Weiner’s algorithm or delete suffixes from the largest to the biggest.
- Update the CSA and the sampling.
Problem (FCST’s are static)

How to insert or remove a text T from a FCST that is indexing a collection C of texts?

- Use Weiner’s algorithm or delete suffixes from the largest to the biggest.
- Update the CSA and the sampling.
Dynamic FCST’s

Use a dynamic CSA’s.

Theorem (Mäkinen, Navarro)

A dynamic CSA over a collection \mathcal{C} can be stored in $nH_k(\mathcal{C}) + o(n \log \sigma)$ bits, with times $t = \Psi = O(((\log \sigma \log n)^{-1} + 1) \log n)$, $\Phi = O((\log \sigma \log n) \log^2 n)$, and inserting/deleting texts T in $O(|T|(t + \Psi))$.

Let's take a closer look at the sampling.
Use a dynamic CSA’s.

Theorem (Mäkinen, Navarro)

A dynamic CSA over a collection \mathcal{C} can be stored in $nH_k(\mathcal{C}) + o(n \log \sigma)$ bits, with times $t = \Psi = O(((\log_\sigma \log n)^{-1} + 1) \log n)$, $\Phi = O((\log_\sigma \log n) \log^2 n)$, and inserting/deleting texts T in $O(|T|(t + \Psi))$.

Let’s take a closer look at the sampling.
How do we guarantee the sampling condition, with at most $O(n/\delta)$ nodes?

We use a purely conceptual reverse tree.

Definition

The reverse tree T^R is the minimal labeled tree that, for every node v of a suffix tree, contains a node v^R denoting the reverse string of the path-label of v.
How do we guarantee the sampling condition, with at most $O(n/\delta)$ nodes?

We use a purely conceptual reverse tree.

Definition

The reverse tree T^R is the minimal labeled tree that, for every node v of a suffix tree, contains a node v^R denoting the reverse string of the path-label of v.
How do we guarantee the sampling condition, with at most $O(n/\delta)$ nodes?

- We use a purely conceptual reverse tree.

Definition

The **reverse tree** T^R is the minimal labeled tree that, for every node v of a suffix tree, contains a node v^R denoting the reverse string of the path-label of v.
Example (Suffix Tree for *abbbab* and its reverse tree)
Note that the SLINK’s correspond to moving upwards on the reverse tree.
We sample the nodes for which \(\text{TDEP}(v^R) \equiv \frac{\delta}{2} \) 0 and \(\text{HEIGHT}(v^R) \geq \frac{\delta}{2} \).
Example (Suffix Tree for `abbbab` and its reverse tree)

What happens when nodes are inserted or deleted?
Example (Suffix Tree for \textit{abbbab} and its reverse tree)

Only the leaves of the reverse tree change.
Example (Suffix Tree for \textit{abbbab} and its reverse tree)

This sampling does not respect the \textup{HEIGHT}(v^R) \geq \delta/2 condition.
To insert a node we do an upwards scan and sample nodes if necessary.
To insert a node we do an upwards scan and sample nodes if necessary.
To insert a node we do an upwards scan and sample nodes if necessary.
To delete a node we keep reference counters to guarantee that it is safe to unsample a node.
To delete a node we keep reference counters to guarantee that it is safe to unsample a node.
Other contributions

- We study the problem of a changing $\lceil \log n \rceil$.
- We give a new way to compute LSA.
- We obtain a generalized branching, that determines $v_1 \cdot v_2$ for nodes v_1 and v_2 and can be computed directly over CSA’s in the sample time as regular branching.
We study the problem of a changing $\lceil \log n \rceil$.

We give a new way to compute LSA.

We obtain a generalized branching, that determines $v_1 \cdot v_2$ for nodes v_1 and v_2 and can be computed directly over CSA's in the sample time as regular branching.
Other contributions

- We study the problem of a changing $\lceil \log n \rceil$.
- We give a new way to compute LSA.
- We obtain a generalized branching, that determines $v_1 \cdot v_2$ for nodes v_1 and v_2 and can be computed directly over CSA's in the sample time as regular branching.
We presented dynamic fully-compressed suffix trees that:

- occupy $uH_k + o(u \log \sigma)$ bits.
- supports usual operations in a reasonable time.
Veli Mäkinen and Johannes Fisher for pointing out the generalized branching problem.

FCT grant SFRH/BPD/34373/2006 and project ARN, PTDC/EIA/67722/2006.

Millennium Institute for Cell Dynamics and Biotechnology, Grant ICM P05-001-F, Mideplan, Chile.
Acknowledgments

Thanks for listening.