Longest common separable pattern among permutations

Mathilde Bouvel, Dominique Rossin, and Stéphane Vialette

CPM, July 9 to 11, 2007

Bouvel, Rossin and Vialette () Longest common separable pattern among p

CPM'07 1/33

Outline

Introduction

Pattern matching for permutations

3 Our results

- A polynomial-time algorithm
- Hardness result
- Inapproximability result

4 Open problems

4 **A b b b b b b**

Definitions

" σ contains π as a pattern"

A permutation $\pi \in \mathfrak{S}_k$ is said to be a pattern (or to occur) whithin a permutation $\sigma \in \mathfrak{S}_n$ if σ has a subsequence that is order-isomorphic to π , *i.e.*, there exist $1 \le x_1 \le x_2 \le \ldots \le x_k \le n$ such that for $1 \le i, j \le k$,

$$\sigma(\mathbf{x}_i) < \sigma(\mathbf{x}_j)$$
 iff $\pi(i) < \pi(j)$.

Example

A permutation contains the pattern (1, 2) iff it has an ascending subsequence of length two. Note that members need not actually be consecutive, merely ascending

Therefore, of the 3! = 6 partitions of $\{1, 2, 3\}$, all but (3, 2, 1) contain the pattern (12), *i.e.*, an increasing subsequence of length two.

< 日 > < 同 > < 回 > < 回 > < □ > <

Definitions

" σ contains π as a pattern"

A permutation $\pi \in \mathfrak{S}_k$ is said to be a pattern (or to occur) whithin a permutation $\sigma \in \mathfrak{S}_n$ if σ has a subsequence that is order-isomorphic to π , *i.e.*, there exist $1 \le x_1 \le x_2 \le \ldots \le x_k \le n$ such that for $1 \le i, j \le k$,

$$\sigma(\mathbf{x}_i) < \sigma(\mathbf{x}_j)$$
 iff $\pi(i) < \pi(j)$.

Example

The permutation $\sigma = (7, 2, 5, 3, 8, 6, 1, 4, 9)$ contains the permutation $\pi = (1, 3, 2, 4)$ as a pattern:

$$\sigma = (7, 2, 5, 3, 8, 6, 1, 4, 9)$$

$$\pi = (1, 3, 2, 4)$$

Pattern avoiding

Pattern avoiding

A permutation σ that does not contain a permutation π as a pattern is said to avoid π .

The set of all permutations avoiding the patterns $\pi_1, \pi_2, \ldots, \pi_k$ is denoted $\mathfrak{S}(\pi_1, \pi_2, \ldots, \pi_k)$ and $\mathfrak{S}_n(\pi_1, \pi_2, \ldots, \pi_k)$ denotes the set of all permutations of length *n* avoiding $\pi_1, \pi_2, \ldots, \pi_k$.

Example

• $\sigma = (1, 4, 2, 5, 6, 3)$ contains the pattern (1, 3, 4, 2)(1, 5, 6, 3), (1, 4, 6, 3), (2, 5, 6, 3) and (1, 4, 5, 3) are the occurrences of this pattern in σ .

σ ∈ Θ((3,2,1)), *i.e.*, σ avoids the pattern (3,2,1) as no subsequence of length 3 is decreasing.

Combinatorics versus Algorithmic

Context

- In combinatorics, much research focused on closed classes of permutations:
 - permutations that do not contain the pattern (3, 1, 2),
 - permutations that do not contain the pattern (2, 1, 3),
 - permutations that do not contain the pattern (2,3,1) nor (3,1,2),
 - permutations that do not contain the pattern (1, 2, 4, 3) nor (2, 1, 4, 3),
 - ...
- There is considerably less research on algorithmic aspects of pattern involvement.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pattern-matching permutations

Numbers of pattern-matching permutations of k, k + 1, ..., n for various patterns $(a_1, ..., a_k)$ of length k.

pattern	Sloane	nb. of pattern-matching permutations
(1)	A000142	1, 2, 6, 24, 120, 720, 5040,
(1,2)	A033312	1, 5, 23, 119, 719, 5039, 40319,
(1, 2, 3, 4)	A000000	1, 17, 207,
(1,3,4,2)	A000000	1, 17, 208,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Pattern-avoiding permutations

Numbers of pattern-avoiding permutations of 1, 2, ..., n for various sets of patterns.

Wilf class	Sloane	nb. of pattern-avoiding permutations
{(1 , 2 , 3),		
(1,3,2),	A000027	1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
(2,1,3)}		
$\{(1,3,2),$		
(2,3,1),	A000027	1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
(3,2,1)}		
$\{(1,2,3),$		
(1,3,2),	A000073	1, 2, 4, 7, 13, 24, 44, 81, 149,
(3,2,1,4)}		

Two patterns P_1 and P_2 belong to the same Wilf class if $|\mathfrak{S}_n(P_1)| = |\mathfrak{S}_n(P_2)|$ for all *n*.

Bouvel, Rossin and Vialette () Longest common separable pattern among p

CPM'07 7/33

Separable permutations

Separable permutation

The class of *separable permutations*, denoted Sep, is defined by $Sep = \mathfrak{S}((2,4,1,3), (3,1,4,2)).$

Other characterizations

- Permutation graphs [Bose, Buss and Lubiw, 1998],
- Interval decomposition [Bui-Xuan, Habib and Paul, 2005],
- Separating trees [Bose, Buss and Lubiw, 1998].

イロト イポト イラト イラト

Separating trees

Definition

A separating tree for a separable permutation $\pi = (\pi_1, \pi_2, ..., \pi_k)$ is a binary tree *T* with leaves labeled $\pi_1, \pi_2, ..., \pi_k$ in that order, such that for each node *u* of *T*, the set $\{\pi_i, \pi_{i+1}, ..., \pi_{i+j}\}$ of the leaves of the subtree rooted at *u* forms a contiguous subrange of [1, 2, ..., k].

Remarks

- The separating tree may not be unique.
- There exists a linear-time to decide if a permutation π is separable and if so, to construct a separating tree for π [Bose, Buss and Lubiw, 1998].

< 日 > < 同 > < 回 > < 回 > < □ > <

Introduction

Separating trees

Separating trees

Easy properties

The set of leaves in the subtree rooted at *u* is the range of *u*.

If a node u has left child u_{left} and right child u_{right} then

- the range of u_{left} immediatly precedes the range of u_{right} (u is a positive node), or
- the range of u_{left} immediatly succeeds the range of u_{right} (u is a negative node).

4 D K 4 B K 4 B K 4 B K

Introduction

Separating trees

Outline

Introduction

Pattern matching for permutations

3 Our results

- A polynomial-time algorithm
- Hardness result
- Inapproximability result

Open problems

Pattern matching

PATTERN-MATCHING-FOR-PERMUTATIONS (PATTERN INVOLVEMENT)

- Input : A permutation $\sigma \in \mathfrak{S}_n$ and a permutation $\pi \in \mathfrak{S}_k$.
- Question : Is π a pattern of σ ?

Algorithmic issues

- NP-complete [Bose, Buss and Lubiw, 1998],
- solvable in O(n⁵ log n) time for fixed separable pattern, [Albert, Aldred, Atkinson and Holton, 2001]
- solvable in O(kn⁴) time and O(kn³) space for separable permutations [Ibarra, 1997]

< ロ > < 同 > < 回 > < 回 >

Finding a common pattern

LONGEST-COMMON-PATTERN

- **Input** : A collection of permutations $\sigma_1, \sigma_2, \ldots, \sigma_n$.
- Solution : A permutation π that occurs as a pattern in each input permutation σ_i , $1 \le i \le n$.
- **Measure** : The size of the common pattern, *i.e.*, $|\pi|$.

Algorithmic issues

- NP-complete [Bose, Buss and Lubiw, 1998],
- Solvable in polynomial-time provided that one of the two permutation is separable [Bouvel and Rossin, 2006].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finding a common C-pattern

LONGEST-C-COMMON-PATTERN

- Input : A collection of permutations $\sigma_1, \sigma_2, \ldots, \sigma_n$.
- Solution : A permutation $\pi \in C$ that occurs as a pattern in each input permutation σ_i , $1 \le i \le n$.
- **Measure** : The size of the common pattern, *i.e.*, $|\pi|$.

Algorithmic issues

- Complexity: NP-complete but widely unexplored.
- We focus here on C =Sep.

CPM'07 16/33

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

Pattern matching for permutations

Our results

- A polynomial-time algorithm
- Hardness result
- Inapproximability result

Open problems

Finding a longest common pattern

- We focus here on separable permutations.
 - We do not require the input permutations to be separable.
 - Tree-like structure.
- Beside separable permutations, only a few restricted cases were considered (*e.g.*, finding a longest increasing or decreasing subpermutation).

4 D K 4 B K 4 B K 4

Definition

Let $\pi = (\pi_i, \pi_2, ..., \pi_k)$ and $\pi'(\pi'_i, \pi'_2, ..., \pi'_{k'})$ be two permutations. The positive and negative concatenations of π and π' are defined by:

$$\pi \oplus \pi' = (\pi_1, \pi_2, \dots, \pi_k, \pi'_1 + k, \pi'_2 + k, \dots, \pi'_{k'} + k)$$

$$\pi \ominus \pi' = (\pi_1 + k', \pi_2 + k', \dots, \pi_k + k', \pi'_1, \pi'_2, \dots, \pi'_{k'})$$

Properties

- If both π and π' are separable, then so are $\pi \oplus \pi'$ and $\pi \ominus \pi'$.
- Any separable permutation π of length at least 2 might be written as π = π₁ ⊕ π₂ or π = π₁ ⊕ π₂ for some non empty separable permutations π₁ and π₂.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let $\pi \in \mathfrak{S}_k$ and $\sigma \in \mathfrak{S}_n$ be such that π has the occurrence $\sigma_i, \sigma_i, \sigma_i, \ldots, \sigma_i$ in σ . Let *I* and *V* be two subintervals of [1:n] such that

• $\{i_1, i_2, \ldots, i_k\} \subseteq I$ and

•
$$\{\sigma_{i_1}, \sigma_{i_2}, \ldots, \sigma_{i_k}\} \subseteq V.$$

We say that π is a pattern of σ using the intervals *I* of indices and *V* of values in σ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Decomposition theorem I

Theorem

Let π_1 be a common separable pattern of $\sigma_1, \sigma_2, ..., \sigma_n$ that uses the intervals $[i_q..h_q - 1]$ of indices and $[a_q..c_q - 1]$ (resp. $[c_q..b_q]$) of values in σ_q , $1 \le q \le n$.

Let π_2 be a common separable pattern of $\sigma_1, \sigma_2, ..., \sigma^n$ that uses the intervals $[h_q..j_q]$ of indices and $[c_q..b_q]$ (resp. $[a_q..c_q - 1]$) of values in σ_q , $1 \le q \le n$.

Then $\pi = \pi_1 \oplus \pi_2$ (resp. $\pi = \pi_1 \oplus \pi_2$) is a common separable pattern of $\sigma_1, \sigma_2, \ldots, \sigma^n$ that uses the intervals $[i_q..j_q]$ of indices and $[a_q..b_q]$ of values in σ_q , $1 \le q \le n$.

Decomposition theorem II

Theorem

Let π be a common separable pattern of maximal length of $\sigma_1, \sigma_2, \ldots, \sigma_n$ among those using the intervals $[i_q..j_q]$ of indices and $[a_q..b_q]$ of values in σ_q , $1 \le q \le n$. If $\pi = \pi_1 \oplus \pi_2$ (resp. $\pi = \pi_1 \oplus \pi_2$), π_1 and π_2 being two non-empty separable patterns, then there exist indices $(h_q)_{1 \le q \le n}$ and values $(c_q)_{1 \le q \le n}, i_q < h_q \le j_q$, $a_q < c_q \le b_q$, $1 \le q \le n$, such that • π_1 is a common separable pattern of maximal length of $\sigma_1, \sigma_2, \ldots, \sigma_n$ among those using the intervals $[i_q..h_q - 1]$ of indices and $[a_q..c_q - 1]$ (resp. $[c_q..b_q]$) of values in σ_q , $1 \le q \le n$, and

π₂ is a common separable pattern of maximal length of σ₁, σ₂,..., σ_n among those using the intervals [h_q..j_q] of indices and [c_q..b_q] (resp. [a_q..c_q − 1]) of values in σ_q, 1 ≤ q ≤ n.

ヘロマ ふぼう ヘヨマ ヘロマ

sketch

- Dynamic programming algorithm.
- Merging and splitting separables patterns.
- Dynamic programming table *M* of size 4*n*:

$$M[\overbrace{i_1,j_1,a_1,b_1}^{\sigma_1},\overbrace{i_2,j_2,a_2,b_2}^{\sigma_2},\ldots,\overbrace{i_n,j_n,a_n,b_n}^{\sigma_n}]$$

contains a common maximum size separable pattern using intervals $[i_q : j_q]$ of indices and $[a_q : b_q]$ of values in σ_q , $1 \le q \le n$.

Theorem

The LONGEST-SEP-COMMON-PATTERN problem is solvable in $O(m^{6n+1})$ time and $O(m^{4n+1})$ space, where *n* is the number of permutations and *m* is the maximum size of a permutation.

Remarks

- What about the computational complexity (**P** versus **NP**) of the LONGEST-SEP-COMMON-PATTERN problem ?
- Is the LONGEST-SEP-COMMON-PATTERN problem an issue for approximating the LONGEST-COMMON-PATTERN problem ?

Hardness result

Theorem

The LONGEST-C-COMMON-PATTERN problem, in its natural decision version, is **NP**–complete for C = Sep, even if each input permutation is itself separable.

Remarks

- The number of input permutations is not fixed.
- Reduction from the INDEPENDENT-SET problem: find a subset of vertices in a graph no two of which are adjacent.
- Matching diagrams.

A B F A B F

From permutations to matching diagrams

Matching diagram

- Vertex labeled graph where vertices are labeled by distinct numbers in {1,2,...,n}.
- Each vertex *i* ∈ {1,2,...,*n*} is connected by an edge to exactly one vertex *j* ∈ {*n* + 1, *n* + 2,...,2*n*}.
- Each vertex j ∈ {n + 1, n + 2, ..., 2n} is connected by an edge to exactly one vertex j ∈ {1, 2, ..., n}.

From permutations to matching diagrams

Definition

A matching diagram G' is said to occur in a matching diagram G if on can obtain G' from G by a sequence of edge deletion.

Theorem

The LONGEST-C-COMMON-PATTERN problem for C =Sep is computationally equivalent to the following problem: "Given a set of matching diagrams, find a largest matching diagram that occurs in each input matching diagram".

Remarks

- $\{\Box, \emptyset\}$ -linear graphs.
- {□}-matching diagram versus increasing subsequence.
- {0}-matching diagram versus decreasing subsequence.

Key ideas

Inapproximability result

Stanley-Wilf Conjecture

Definition

Let $F(n, \sigma)$ denote the number of permutations on the symmetric group \mathfrak{S}_n which avoid σ as a subpattern.

Stanley-Wilf Conjecture

Stanley and Wilf conjectured that, for every permutation pattern σ , there is a constant $c(\sigma) < \infty$ such that for all n, $F(n, \sigma) \le (c(\sigma))^n$.

• A related conjecture stated that for every sigma, the limit

 $\lim_{n\to\infty}(F(n,\sigma))^{1/n}$

exists and is finite.

- Arratia (1999) showed that these two conjectures are equivalent.
- The conjecture was proved by Marcus and Tardos (2004).

Inapproximabilty result

Theorem

For any $\varepsilon > 0$ and any pattern avoiding permutation class C, there exists a sequence $(\sigma_n)_{n \in \mathbb{N}}$, $\sigma_n \in \mathfrak{S}_n$, such that $|\pi_n| = o(n^{0.5+\varepsilon})$, where π_n is a longest permutation of class C involved as a pattern in σ_n .

Theorem

The LONGEST-COMMON-PATTERN problem cannot be approximated within a tighter ratio that $\sqrt{\text{opt}}$ by solving the LONGEST-C-COMMON-PATTERN problem, where C if a pattern-avoiding permutation class and opt is the size on the optimal solution for the LONGEST-COMMON-PATTERN problem.

イロト 不得 トイヨト イヨト

Outline

Introduction

Pattern matching for permutations

3 Our results

- A polynomial-time algorithm
- Hardness result
- Inapproximability result

Open problems

Open problems [1]

Parameterized complexity

Is the PATTERN-MATCHING-FOR-PERMUTATIONS problem fixed-parameter tractable ?

Equivalently, does there exist an algorithm solving the PATTERN-MATCHING-FOR-PERMUTATIONS problem that runs in time $n^c f(k)$ for some constant *c* and some arbitrary function $f(\cdot)$?

A (10) A (10) A (10)

Open problems [2]

Finitely based classes

Is the LONGEST-C-COMMON-PATTERN problem polynomial-time solvable for any *finitely based* permutation class C (in case of a fixed number of input permutations).

Remarks

- For a permutation class *C*, deciding whether a permutation belongs to *C* might be an **NP**–complete problem (*e.g.*, 4-stack sortable permutations).
- We are not aware of any finitely based pattern-avoiding permutation class for which the recognition problem is NP-hard.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >