Finding Witnesses by Peeling

Yonatan Aumann¹

Moshe Lewenstein¹ Noa Lewenstein² Dekel Tsur³

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

¹Bar-Ilan University

²Netanya Academic College

³Ben-Gurion University

Witness Problems

- The k-mismatches problem is given P and T, to find all substrings T' of T with |T'| = |P| and Hamming(T', P) ≤ k.
- Suppose that we also want to find for every T' that satisfies the requirements above, all the indices i s.t. T'[i] ≠ P[i].
 This problem can be solved in O(kn) time using the

kangaroo method.

Witness Problems

- The k-mismatches problem is given P and T, to find all substrings T' of T with |T'| = |P| and Hamming(T', P) ≤ k.
- Suppose that we also want to find for every T' that satisfies the requirements above, all the indices i s.t. T'[i] ≠ P[i]. This problem can be solved in O(kn) time using the kangaroo method.
- In the k-matches problem, we need to find all substrings T' with |T'| = |P| and $\operatorname{Hamming}(T', P) \le |P| k$. We also want for each such T', all the indices i s.t. T[i] = P[i].

イロト イヨト イヨト イヨト

The k-aligned ones problem Input Strings P and T over alphabet $\Sigma = \{0, 1\}$ of lengths m and n. Output For each substring T' of T with |T'| = m and $\sum_{i=1}^{m} P[i]T'[i] \le k$, output all indices i s.t. P[i] = T[i] = 1(all locations of 1-against-1 when P is aligned with T')

Example

T = 101101, P = 10111, k = 2For T' = T[1..5] = 10110, $\sum P[i]T'[i] = 3$ For T' = T[2..6] = 01101, $\sum P[i]T'[i] = 2$, output is 3, 5.

イロン イ部ン イヨン イヨン 三日

	Deterministic	Randomized
Previous	$O(nk^3 \cdot \log m \cdot \log k)$	$O(nk \cdot \log^4 m)$
	[AF95]	[Mut95]
New	$O(nk \cdot \log^{O(1)} m)$	$O(nk \cdot \log m + n \cdot \log^2 m \cdot \log k)$

$$n = |T|$$
$$m = |P|$$

(ロ) (日) (日) (日) (日)

The Reconstruction Problem

Unknown sets $S_1, \ldots, S_n \subseteq U$, with |U| = m.

Goal: Reconstruct k_i elements from S_i using few queries of the following types:

• ISIZE
$$(A) = \langle |S_1 \cap A|, \ldots, |S_n \cap A| \rangle.$$

• ISUM(A) =
$$\langle \sum_{u \in S_1 \cap A} u, \ldots, \sum_{u \in S_n \cap A} u \rangle$$
.

k-reconstruction
$$k_i = \min(k, |S_i|) = \begin{cases} |S_i| & \text{if } |S_i| \le k \\ k & \text{otherwise} \end{cases}$$

bounded k-reconstruction $k_i = \begin{cases} |S_i| & \text{if } |S_i| \le k \\ 0 & \text{otherwise} \end{cases}$

Solving the *k*-Aligned Ones Problem

Let P and T be strings of lengths m and n.

- Define $U = \{1, ..., m\}$.
- Define S_i = {j ∈ U : T[i − 1 + j] = P[j] = 1}. (all locations of 1-against-1 when P is aligned with the *i*-th substring of T of length m)

イロト イポト イヨト イヨト 三国

• For a set $A \subseteq U$, let b_A, c_A be vectors of length m:

•
$$b_A[i] = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{otherwise} \end{cases}$$

• $c_A[i] = \begin{cases} i & \text{if } i \in A \\ 0 & \text{otherwise} \end{cases}$

- The convolution $T \circ b_A$ gives ISIZE(A).
- The convolution $T \circ c_A$ gives ISUM(A).

k-Separators

Definition

Let $S \subseteq U$ and F = set of subsets of U. F is a *k*-separator for S if there are sets $A_1, \ldots, A_{\min(k,|S|)} \in F$ s.t.

• for each
$$i$$
, $|S \cap A_i| = 1$.

k-Separators

Definition

Let $S \subseteq U$ and F = set of subsets of U. F is a *k*-separator for S if there are sets $A_1, \ldots, A_{\min(k,|S|)} \in F$ s.t.

• for each
$$i$$
, $|S \cap A_i| = 1$.

2 for $i \neq j$, $S \cap A_i \neq S \cap A_j$.

k-Separators

Definition

Let $S \subseteq U$ and F = set of subsets of U. F is a *k*-separator for S if there are sets $A_1, \ldots, A_{\min(k,|S|)} \in F$ s.t.

• for each
$$i$$
, $|S \cap A_i| = 1$.

2 for $i \neq j$, $S \cap A_i \neq S \cap A_j$.

Let *F* be a *k*-separator for S_1, \ldots, S_n . The *k*-reconstruction problem is solved as follows:

1 For each
$$A \in F$$
 do
2 $z_A^1, \dots, z_A^n \leftarrow \text{ISIZE}(A)$
3 $m_A^1, \dots, m_A^n \leftarrow \text{ISUM}(A)$
4 For $i = 1, \dots, n$ do
5 For each $A \in F$ do
6 If $z_A^i = 1$ then output m_A^i

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem

There is a deterministic algorithm s.t. for every collection of sets S_1, \ldots, S_n with $|S_i| \ge k \log^c m$ for all *i* (where *c* is some constant), it constructs a *k*-separator *F* for S_1, \ldots, S_n with $|F| = O(k \cdot \text{polylog}(mn))$. The algorithm makes $O(k \cdot \text{polylog}(mn))$ calls to the procedure ISIZE(·).

Proof.

Follows from results of Alon & Naor (1996) and Ta-Shma, Umans, & Zuckerman (2001).

k-separator allows us to solve the *k*-reconstruction problem when S_1, \ldots, S_n are sets of size $\geq k \cdot \log^c m$.

・ロッ ・聞 ・ ・ 聞 ・ ・ 日 ・

(日) (同) (目) (日) (日)

(日) (同) (目) (日) (日)

(日) (同) (目) (日) (日)

(日) (同) (目) (日) (日)

1 For each
$$A \in F$$
 do
2 $z_A^1, \ldots, z_A^n \leftarrow \text{ISIZE}(A)$
3 $m_A^1, \ldots, m_A^n \leftarrow \text{ISUM}(A)$
4 For $i = 1, \ldots, n$ do
5 Ones $\leftarrow \{A \in F : z_A^i = 1\}$.
6 While Ones is not empty do
7 Choose any $A \in \text{Ones}$ and remove A from Ones
8 Output m_A^i
9 For each $B \in F$ such that $m_A^i \in B$ do
10 $z_B^i \leftarrow z_B^i - 1$
11 $m_B^i \leftarrow m_B^i - m_A^i$
12 If $z_B^i = 1$ then add B to Ones

(ロ) (四) (日) (日) (日)

Definition

Let $P = (A_1, \ldots, A_k)$ be a sequence of sets. P is a peeling sequence for S if for $i = 1, \ldots, k$, $|A_i \cap (S - \bigcup_{j=1}^{i-1} A_j)| = 1$.

Definition

Let S be a set and F a collection of sets. We say that F is a *k*-peeler for S if F contains a peeling sequence for S of length $k' = \min(k, |S|)$.

◆□→ ◆圖→ ◆国→ ◆国→

Theorem

If F is a k-peeler for S then the peeling procedure finds $\min(k, |S|)$ distinct elements of S.

Theorem (Indyk 2002)

There is a deterministic algorithm s.t. given U and k, it constructs a collection of sets F such that

For every set S ⊆ U of size at most k, F is a k-peeler of S.

《曰》 《圖》 《臣》 《臣》

$$|F| = O(k \cdot \operatorname{polylog}(m)).$$

Solving the *k*-Reconstruction Problem

t = time for computing ISIZE(A) or ISUM(A).

Theorem

The bounded k-reconstruction problem can be solved in $O(tk \cdot polylog(m))$ time.

Proof.

Use a k-peeler and the peeling procedure.

Solving the *k*-Reconstruction Problem

t = time for computing ISIZE(A) or ISUM(A).

Theorem

The bounded k-reconstruction problem can be solved in $O(tk \cdot polylog(m))$ time.

Proof.

Use a k-peeler and the peeling procedure.

Theorem

The k-reconstruction problem can be solved in $O(tk \cdot polylog(mn))$ time.

Proof.

Sets of size $\leq k \cdot \log^{c} m$: use a $k \cdot \log^{c} m$ -peeler. Sets of size $> k \cdot \log^{c} m$: use a k-separator.

Randomized Algorithms for k-Reconstruction

Theorem

The bounded k-reconstruction problem can be solved in time

- $O(tk \cdot \text{polylog}(m)) deterministic.$
- $O(t(k + \log k \cdot \log n) + nk \log(mn))$ randomized.

Theorem

The k-reconstruction problem can be solved in time

- $O(tk \cdot \text{polylog}(mn)) deterministic.}$
- $O(t(k(\log m + \log k \log \log m) + \log n \log m) + nk \log(mn))$ — randomized.

イロン イ部ン イヨン イヨン 三日

Randomized Construction of k-Peelers

• A *p*-random set is a subset of *U* that contains each element of *U* with probability *p*.

《曰》 《聞》 《臣》 《臣》 三臣

• For $S \subseteq U$ and $p \approx \frac{1}{|S|}$, if A is p-random then $|A \cap S| = 1$ with probability $\geq \frac{1}{6}$.

Randomized Construction of k-Peelers

- A *p*-random set is a subset of *U* that contains each element of *U* with probability *p*.
- For $S \subseteq U$ and $p \approx \frac{1}{|S|}$, if A is p-random then $|A \cap S| = 1$ with probability $\geq \frac{1}{6}$.
- Suppose that |S| = k. We build collections $F^{(0)}, F^{(1)}, \ldots, F^{(\lceil \log k \rceil)}$ of sets, where $F^{(i)}$ contains $\frac{1}{2^{j}}$ -random sets.
- Using $F^{(\lceil \log k \rceil)}$, S is peeled down to a set of size k/2.
- Using $F^{(\lceil \log k \rceil 1)}$, S is peeled down to a set of size k/4.

Application — All-Pairs Shortest Paths

G = an undirected graph.

M(n) = time for multiplying two $n \times n$ boolean matrices.

• The distance between every pair of vertices can computed in $O(M(n) \log n)$ time [Alon et al. 92, Seidel 95]

回 と く ヨ と く ヨ と …

Application — All-Pairs Shortest Paths

G = an undirected graph.

M(n) = time for multiplying two $n \times n$ boolean matrices.

- The distance between every pair of vertices can computed in $O(M(n) \log n)$ time [Alon et al. 92, Seidel 95]
- Finding a shortest path between any u and v can be done in O(dist(u, v)) time, after preprocessing whose time is
 - $O(M(n) \log n)$ randomized [Alon et al. 92, Seidel 95].

イロト イヨト イヨト イヨト

• $O(M(n) \operatorname{polylog}(n))$ deterministic [Alon & Naor 96].

The results above rely on algorithms for the 1-reconstruction problem.

Application — All-Pairs Shortest Paths

G = an undirected graph.

M(n) = time for multiplying two $n \times n$ boolean matrices.

- The distance between every pair of vertices can computed in $O(M(n) \log n)$ time [Alon et al. 92, Seidel 95]
- Finding a shortest path between any u and v can be done in O(dist(u, v)) time, after preprocessing whose time is
 - $O(M(n) \log n)$ randomized [Alon et al. 92, Seidel 95].
 - $O(M(n) \operatorname{polylog}(n))$ deterministic [Alon & Naor 96].

The results above rely on algorithms for the 1-reconstruction problem.

- New result: Finding k shortest paths between u and v can be done in $O(k \cdot \operatorname{dist}(u, v))$ time, after preprocessing whose time is
 - $O(M(n)(k + \log n))$ randomized.
 - $O(M(n) \cdot k \cdot \text{polylog}(n))$ deterministic.