An Improved Algorithm for the Macro-evolutionary Phylogeny Problem

Behshad Behzadi and Martin Vingron

Max Planck Institute for Molecular Genetics

CPM 2006, Barcelona

An Improved Algorithm for the Macro-evolutionary Phylogeny Problem - p.1/16

Gene trees, species trees and gene duplications

• Topology of gene trees and species trees are usually different.

- The evolutionary history of a gene family should be determined by:
 - micro-evolutionary events (sequence evolution)
 - macro-evolutionary events (gene duplication and loss)

• Tree Reconciliation Algorithm (Page 1994)

Durand et al. (RECOMB2005)

• A Hybrid Micro-Macroevolutionary Approach to Gene Tree Reconstruction

Two phase approach:

Phase 1: A gene tree based only on micro-evolutionary model is constructed.

Phase 2: Refining the tree w.r.t. a macroevolutionary model.

- regions with strong sequence support are left intact.
- other regions are rearranged w.r.t to the **D/L score**.

D/L score: $c_{\lambda}L + c_{\delta}D$, the weighted sum of the number of duplications, D, and the number of of losses, L, in the tree.

• Input: A rooted species tree, T_S with s leaves; a list of multiplicities $m_1, ..., m_s$, where m_l is the number of gene family members found in species l; weights c_λ and c_δ .

• **Output:** The set of all rooted gene trees $\{T_G\}$ with $\sum_{l=1}^{s} m_l$ leaves such that D/L Score of T_G is minimal.

The Macro-Evolutionary Phylogeny Problem

- The output can be represented only by annotation of the species tree by the number of gene copies in different nodes.
- each duplication increases the number of gene copies by one.
- each loss decreases the number of the gene copies by one.
- the entering number of genes in root should be one.

- if i < j then j i duplications
- if i = j then speciation
- if i > j then i j losses

Minimal D/L score history

• a) species tree

- b) a history with one duplication and one loss
- c) a history with two duplications.

- Durand et al. (Recomb 2005)
 - Dynamic Programming for filling a table COST[i, j, v]
 - Finding the optimal solution using this table COST.

- This work
 - Dynamic Programming with a reduced dimension
 - Using combinatorial properties of optimal generation function g(x,T).

 g(x, T) the minimum D/L score of T where its root has x entering copies of genes.

$$g(x, \mathcal{T}) = \min \begin{cases} g(x + 1, \mathcal{T}) + c_0 & \text{(Loss)} \\ g(x - 1, \mathcal{T}) + c_\lambda & \text{(Loss)} \\ g(x, \mathcal{T}_L) + g(x, \mathcal{T}_R) & \text{(Speciation)} \end{cases}$$

General Structure of g(x, T)

General Structure of g(x, T)

g(x,T) in range $(-\infty,\infty)$:

- is firstly strictly decreasing,
- adapts its minimum on an interval,
- and then it is strictly increasing.

General Structure of g(x, T)

g(x,T) in range $(-\infty,\infty)$:

- is firstly strictly decreasing,
- adapts its minimum on an interval,
- and then it is strictly increasing.

g(x,T) is convex; $\Delta g(x,T) = g(x,T) - g(x-1,T)$ is increasing. for very large x, $\Delta g(x,T) = c_{\lambda}$ and for very small x and $\Delta g(x,T) = -c_{\delta}$.

- a) Interval 3 is the optimal interval of g(x, T).
- b) Interval 3 is the optimal interval of g(x, T).
- c) The optimal interval of g(x, T) is included in 3.

- In interval (2,3,4), $g(x, T) = g(x, T_L) + g(x, T_R)$.
- In interval (1), $g(x, \mathcal{T}) = \min\{g(x, \mathcal{T}_L) + g(x, \mathcal{T}_R), g(x+1, \mathcal{T}) + c_\delta\}$
- In interval (5), $g(x, \mathcal{T}) = \min\{g(x, \mathcal{T}_L) + g(x, \mathcal{T}_R), g(x 1, \mathcal{T}) + c_\lambda\}$

Algorithm

Gencost(Tree T)

1. if T is a leaf then 1.1 for $i \leftarrow 1$ to m do 1.1.1 if $i \ge label(T)$ then $g[i,T] \leftarrow (i-label(T)) \times c_{\lambda}$ 1.1.2 if i < label(T) then $g[i,T] \leftarrow (label(T)-i) \times c_{\delta}$ 1.2 exit 2. GenCost(T_L); GenCost(T_R); 3. $[l_1, l_2] \leftarrow OPT(T_L)$; $[r_1, r_2] \leftarrow OPT(T_R)$ 4. $t_1 \leftarrow \min\{l_1, r_1\}$; $t_2 \leftarrow \min\{l_2, r_2\}$ 5. for $i \leftarrow t_1$ to t_2 do $g[i,T] \leftarrow g[i,T_L] + g[i,T_R]$ 6. for $i \leftarrow t_2 + 1$ to m do $g[i,T] \leftarrow \min\{g[i-1,T] + c_{\lambda}, g[i,T_L] + g[i,T_R]\}$ 7. for $i \leftarrow t_1 - 1$ downto 1 do $g[i,T] \leftarrow \min\{g[i+1,T] + c_{\delta}, g[i,T_L] + g[i,T_R]\}$

Table of Time Complexities

	One optimal answer	k optimal answer
Durand et al. 2005	$O(nm^2)$	$O(nm^2 + nmk)$
This work	O(nm)	O(nm + nk)
This work (unit costs)	O(n)	O(nk)

n the size of the species tree.

m the maximum number of gene copies in a species.

 $-c_{\delta} \leq \Delta g(x,T) \leq c_{\lambda}$, so m can be replaced by $\min\{m,c_{\delta}+c_{\lambda}\}$

Summary and Future Work

• We proposed an algorithm running O(m) times faster than the previous algorithm. In some gene families like kinases m can be a large number (several hundreds).

 We are currently working on including horizontal gene transfers into the model. should be considered in the macro-evolutionary problem.

ET CE SOIR ALLEZ LES BLEUS

