A Linear Size Index for Approximate String Matching

CPM 2006

Siu-Lung Tam

Joint work with:
Ho-Leung Chan Tak-Wah Lam
Wing-Kin Sung Swee-Seong Wong

2006-07-05 11:10 +0200
Problem

Index a text $S[1..n]$ over a constant-size alphabet Σ w.r.t. an integer constant k.

For each pattern $P[1..m]$, search for all $S[i..n]$ such that

$\exists \ j \geq i \ \text{dist}(P, S[i..j]) \leq k$.

- We focus on Hamming distance in this talk, although edit distance works similarly.
Indexing for Approximate String Matching

Problem

Index a text $S[1..n]$ over a constant-size alphabet Σ w.r.t. an integer constant k.
For each pattern $P[1..m]$, search for all $S[i..n]$ such that
$\exists j \geq i \ dist(P, S[i..j]) \leq k$.

- We focus on Hamming distance in this talk, although edit distance works similarly.
- Performance is measured by both
 (i) index size, and
 (ii) searching time, which can depend on
 - text size n,
 - alphabet size $|\Sigma|$,
 - number of errors k,
 - pattern length m,
 - number of matches occ
When m, $|\Sigma|$ and k are small ...
When m, $|\Sigma|$ and k are small ...

- Searching $P[1..m]$ for 1 error = Searching $m(|\Sigma| - 1)$
- "1-modified patterns"
Brute Force Searching

- When m, $|\Sigma|$ and k are small ...
- Searching $P[1..m]$ for 1 error = Searching $m(|\Sigma| - 1)$ “1-modified patterns”
- Suppose it takes $O(f(m,n) + occ')$ time to search each 1-modified pattern for exact match.
 - Nowadays $f(m,n)$ is $O(\log n)$ or even $O(\log \log n)$.
Brute Force Searching

- When m, $|\Sigma|$ and k are small ...

- Searching $P[1..m]$ for 1 error = Searching $m(|\Sigma| - 1)$ “1-modified patterns”

- Suppose it takes $O(f(m, n) + occ')$ time to search each 1-modified pattern for exact match.
 - Nowadays $f(m, n)$ is $O(\log n)$ or even $O(\log \log n)$.

- $O(m|\Sigma| f(m, n) + occ)$ time to search P for 1 error.
- $O(m^k|\Sigma|^k f(m, n) + occ)$ time to search P for k errors.
<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>$O(m^2 + \text{occ})$</td>
<td>Cobbs [CPM95]</td>
</tr>
</tbody>
</table>
1-Error Solutions

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>$O(m^2 + occ)$</td>
<td>Cobbs [CPM95]</td>
</tr>
<tr>
<td>$O(n \log^2 n)$</td>
<td>$O(m \log n \log \log n + occ)$</td>
<td>Amir et al. [WADS99]</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(m \log \log n + occ)$</td>
<td>Bauchsbaum et al. [ESA00]</td>
</tr>
</tbody>
</table>
1-Error Solutions

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>$O(m^2 + occ)$</td>
<td>Cobbs [CPM95]</td>
</tr>
<tr>
<td>$O(n \log^2 n)$</td>
<td>$O(m \log n \log \log n + occ)$</td>
<td>Amir et al. [WADS99]</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(m \log \log n + occ)$</td>
<td>Bauchsbaum et al. [ESA00]</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(m + \log n \log \log n + occ)$</td>
<td>Cole et al. [STOC04]</td>
</tr>
<tr>
<td>Space</td>
<td>Time</td>
<td>Authors</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(m^2 + \text{occ})$</td>
<td>Cobbs [CPM95]</td>
</tr>
<tr>
<td>$O(n \log^2 n)$</td>
<td>$O(m \log n \log\log n + \text{occ})$</td>
<td>Amir et al. [WADS99]</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(m \log \log n + \text{occ})$</td>
<td>Bauchschbaum et al. [ESA00]</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(m + \log n \log\log n + \text{occ})$</td>
<td>Cole et al. [STOC04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(m \log n + \text{occ})$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O((m \log n + \text{occ}) \log n)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
</tbody>
</table>
1-Error Solutions

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>$O(m^2 + occ)$</td>
<td>Cobbs [CPM95]</td>
</tr>
<tr>
<td>$O(n \log^2 n)$</td>
<td>$O(m \log n \log \log n + occ)$</td>
<td>Amir et al. [WADS99]</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(m \log \log n + occ)$</td>
<td>Bauchsbaum et al. [ESA00]</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(m + \log n \log \log n + occ)$</td>
<td>Cole et al. [STOC04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(m \log n + occ)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O((m \log n + occ) \log n)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(m \log \log n + occ)$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O((m \log \log n + occ) \log^\epsilon n)$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
<tr>
<td>Space</td>
<td>Time</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(m^2 + \text{occ})$</td>
<td>Cobbs [CPM95]</td>
</tr>
<tr>
<td>$O(n \log^2 n)$</td>
<td>$O(m \log n \log \log n + \text{occ})$</td>
<td>Amir et al. [WADS99]</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(m \log \log n + \text{occ})$</td>
<td>Bauchsbaum et al. [ESA00]</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>$O(m + \log n \log \log n + \text{occ})$</td>
<td>Cole et al. [STOC04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(m \log n + \text{occ})$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O((m \log n + \text{occ}) \log n)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(m \log \log n + \text{occ})$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O((m \log \log n + \text{occ}) \log^e n)$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(m + \log^3 n \log \log n + \text{occ})$</td>
<td>Our Result</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O((m + \log^4 n \log \log n + \text{occ}) \log^e n)$</td>
<td>Our Result</td>
</tr>
</tbody>
</table>
k-Error Solutions in Literature

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>$O((cm)^k \log n + occ)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O(((cm)^k \log n + occ) \log n)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O((cm)^k \log \log n + occ)$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O(((cm)^k \log \log n + occ) \log^\epsilon n)$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
</tbody>
</table>
k-Error Solutions in Literature

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O\left(\frac{c^k}{k!} n \log^k n\right)$</td>
<td>$O\left(m + \frac{c^k}{k!} \log^k n \log \log n + \text{occ}\right)$</td>
<td>Cole et al. [STOC04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O\left((cm)^k \log n + \text{occ}\right)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O\left(((cm)^k \log n + \text{occ}) \log n\right)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O\left((cm)^k \log \log n + \text{occ}\right)$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O\left(((cm)^k \log \log n + \text{occ}) \log^\epsilon n\right)$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
</tbody>
</table>
k-Error Solutions in Literature

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O\left(\frac{c^k}{k!} n \log^k n\right)$</td>
<td>$O\left(m + \frac{c^k}{k!} n \log^k n \log \log n + occ\right)$</td>
<td>Cole et al. [STOC04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O\left((cm)^k \log n + occ\right)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O\left(((cm)^k \log n + occ) \log n\right)$</td>
<td>Huynh et al. [CPM04]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O\left((cm)^k \log \log n + occ\right)$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O\left(((cm)^k \log \log n + occ) \log^\epsilon n\right)$</td>
<td>Lam et al. [ISAAC05]</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O\left(m + (c \log n)^k(k+1) \log \log n + occ\right)$</td>
<td>Our Result</td>
</tr>
<tr>
<td>$O(n)$ bits</td>
<td>$O\left((m + (c \log n)^k(k+2) \log \log n + occ) \log^\epsilon n\right)$</td>
<td>Our Result</td>
</tr>
</tbody>
</table>
We combine

- “k-Errata Trees” by Cole, Gottlieb and Lewenstein [STOC04]
- “Tree Cross Product” by Buchsbaum, Goodrich and Westbrook [ESA00], and

If the pattern is “long-enough”
- this index allows us to locate k-error matches efficiently.

Otherwise
- use the best brute-force searching, by Lam, Sung and Wong [ISAAC05].
Let $\beta \leq |P|$ be an integer, later chosen as $\Theta(\log^{k+1} n)$.

We mark in text S, a checkpoint at every β characters.

- e.g. $S[\beta]$, $S[2\beta]$, $S[3\beta]$, ... are checkpoints.

\[
\begin{array}{cccccccc}
\boxtimes & \boxtimes & \boxtimes & S & \boxtimes & \ldots
\end{array}
\]
Let $\beta \leq |P|$ be an integer, later chosen as $\Theta(\log^{k+1} n)$.

We mark in text S, a checkpoint at every β characters
- e.g. $S[\beta]$, $S[2\beta]$, $S[3\beta]$, ... are checkpoints.

Lemma

Consider a substring $S[i..j]$ that matches P with exactly k errors. $S[i..j]$ contains at least one checkpoint.

In particular, $S[i..i+\beta-1]$ contains exactly one checkpoint.
Index S for k-error searching only around checkpoints.

Let $\text{TAIL} = \{S[a..n] \mid a = \beta, 2\beta, \ldots\}$.
and $\text{HEAD} = \{S[1..b] \mid b + 1 = \beta, 2\beta, \ldots\}$.
Index S for k-error searching only around checkpoints.

Let $\text{TAIL} = \{S[a..n] \mid a = \beta, 2\beta, \ldots\}$. and $\text{HEAD} = \{S[1..b] \mid b + 1 = \beta, 2\beta, \ldots\}$.

```
X X X S X X ... 
```

```
P 
```
Index S for k-error searching only around checkpoints.

Let $\text{T AIL} = \{S[a..n] \mid a = \beta, 2\beta, \ldots\}$.
and $\text{HEAD} = \{S[1..b] \mid b + 1 = \beta, 2\beta, \ldots\}$.

Lemma

Consider a substring $S[i..j]$ that matches P with k errors. There exist non-negative integers $k_1 + k_2 = k$, such that some string in T AIL has a prefix matching P with k_1 errors, and some string in HEAD has a suffix matching P with k_2 errors.

Note that $|\text{T AIL}| = |\text{HEAD}| = O(n/\beta)$
Problem

Index all strings in \textit{TAIL} w.r.t. an integer ℓ. Given a query Q, search for all strings with Q' as a prefix, where $\text{dist}(Q, Q') = \ell$.

Lemma

The STOC04 index
- is a forest of compact tries where each leaf is a suffix of S;
- supports searching in $O(\log^\ell n \log \log n)$ time, if Q is preprocessed using $O(|Q|)$ time on suffix tree of S;
- represents the strings found as the disjoint union over descendant leaves of $O(\log^\ell n)$ nodes in the compact tries;
- contains each suffix at most $O(\log^\ell n)$ times;
- takes $O(|TAIL| \log^\ell n)$ space.
Algorithm 1 Find all k-error matches of P in S, for $|P| \geq \beta$

1: for i in $[1, \beta]$ \{Conceptually cut P into $P[1..i-1]$ and $P[i..m]$\}
do

7: end for
Algorithm 2 Find all k-error matches of P in S, for $|P| \geq \beta$

1: for i in $[1, \beta]$ {Conceptually cut P into $P[1..i-1]$ and $P[i..m]$} do
2: for k_2 in $[0, k]$ {Search for k_2 and $k_1 = k - k_2$ errors respectively} do
6: end for
7: end for
Algorithm 3 Find all \(k \)-error matches of \(P \) in \(S \), for \(|P| \geq \beta \)

1: for \(i \) in \([1, \beta]\) \{Conceptually cut \(P \) into \(P[1..i-1] \) and \(P[i..m] \}\)
 do
2: for \(k_2 \) in \([0, k]\) \{Search for \(k_2 \) and \(k_1 = k - k_2 \) errors respectively\}
 do
3: Find all \(S[a..n] \in TAIL \) with a prefix matching \(P[i..m] \) with \(k_1 \) errors.
4: Find all \(S[1..b] \in HEAD \) with a suffix matching \(P[1..i-1] \) with \(k_2 \) errors.
6: end for
7: end for
Algorithm 4 Find all k-error matches of P in S, for $|P| \geq \beta$

1: for i in $[1, \beta]$ \{Conceptually cut P into $P[1..i-1]$ and $P[i..m]$\}

2: for k_2 in $[0, k]$ \{Search for k_2 and $k_1 = k - k_2$ errors respectively\}

3: Find all $S[a..n] \in$ TAIL with a prefix matching $P[i..m]$ with k_1 errors.

4: Find all $S[1..b] \in$ HEAD with a suffix matching $P[1..i-1]$ with k_2 errors.

5: Find all “connecting pairs”: $S[a..n]$ and $S[1..b]$ where $a = b + 1$.

6: end for

7: end for
Problem

Index a set $I \subseteq V(T_1) \times V(T_2)$. Given a query (u, w), search for all $(x, y) \in I$ where $x \in \text{descendants}(u)$ and $y \in \text{descendants}(w)$.

Lemma

The ESA00 index

- supports searching in $O(\log \log n + \text{occ})$ time;
- takes $O(|I| \log |V|)$ space, where $V = V(T_1) \cup V(T_2)$.
Index a set $I \subseteq V(T_1) \times V(T_2)$. Given a query (u, w), search for all $(x, y) \in I$ where $x \in \text{descendants}(u)$ and $y \in \text{descendants}(w)$.

The ESA00 index

- supports searching in $O(\log \log n + \text{occ})$ time;
- takes $O(|I| \log |V|)$ space, where $V = V(T_1) \cup V(T_2)$.

A pair of leaves is in I if they represent $S[a..n]$ and $S[1..b]$ respectively where $a = b + 1$.

Each (a, b) has $O(\log^{k_1} n)$ and $O(\log^{k_2} n)$ leaves respectively. $|I| = O(\frac{n}{\beta} \log^{k_1} n \log^{k_2} n) = O(\frac{n}{\beta} \log^k n)$.

H.L. Chan, T.W. Lam, W.K. Sung, S.L. Tam, S.S. Wong

A Linear Size Index for Approximate String Matching
Searching Complexity

- By setting $\beta = \Theta(\log^{k+1} n)$, we obtained an $O(n)$ space index.

- $|P| \geq \beta$:
 - It takes $O(\log^k n \log \log n + occ')$ time to search STOC04 and ESA00 indexes.
 - It takes $O(m)$ time to preprocess P to enable the above searching.
 - Searching time is $O(m + \beta \log^k n \log \log n + occ) = O(m + \log^{2k+1} n \log \log n + occ)$.

- $|P| < \beta$:
 - Searching time is $O((cm)^k \log \log n + occ) = O((c \log n)^{k(k+1)} \log \log n + occ)$.
If we pick $\beta = \Theta(\log^{k+2} n)$ and use a compressed suffix tree to replace the suffix tree in [STOC04], we obtain an index using $O(n)$ bits.

Space-time tradeoff is possible by choosing a smaller β and using the brute-force searching technique for some of the k errors.

Extension to edit distance is possible but each k-error match maybe reported multiple times.
Future Directions

- Make a better trade-off — the gap in time complexity between long and short patterns
- Improve “output complexity” of [STOC04]
- Improve space complexity of [ESA00]
- Improve searching complexity for short patterns
- Our recent ESA 2006 paper uses $O(n)$ space to allow k-error searching in $O((cm)^{k-1} \log n \log \log n + occ)$ time.

 Using this result, searching time is reduced to $O(m + \log^k n \log \log n + occ)$.

H.L.Chan, T.W.Lam, W.K.Sung, S.L.Tam, S.S.Wong
A Linear Size Index for Approximate String Matching