Linear Programming for Phylogenetic Reconstruction Based on Gene Rearrangements

Jijun Tang

jtang@cse.sc.edu

Department of Computer Science and Engineering
University of South Carolina

Acknowledgment

- Joint work with Bernard Moret (University of New Mexico).
- Supported by National Science
 Foundation and U. of South Carolina.

Overview

- Introduction to gene-order data
- GRAPPA and the computational challenge
- Linear programming setup
- Experimental design
- Experimental results
- Conclusions

What Is A Phylogeny?

What Is A Phylogeny?

The evolutionary history of a group of organisms

What Is A Phylogeny?

- The evolutionary history of a group of organisms
- Usually takes the form of a tree:
 - Modern organisms are placed at the leaves
 - Edges denote evolutionary relationships

Example

Gene-Order Data

Gene-Order Data

- Chromosome can be represented by an ordering of signed genes
 - Linear or circular
 - Sign of a gene represents gene orientation

Gene-Order Data

- Chromosome can be represented by an ordering of signed genes
 - Linear or circular
 - Sign of a gene represents gene orientation
- The gene order can be rearranged by evolutionary events such as:
 - Inversion, transposition and inverted transposition
 - Deletion and insertion

Gene-Order Rearrangements

Distance based methods:
 Neighbor-joining and its variants

- Distance based methods:
 Neighbor-joining and its variants
- Bayesian method:Badger

- Distance based methods:
 Neighbor-joining and its variants
- Bayesian method:Badger
- Maximum parsimony based on encoding:
 MPBE, MPME

- Distance based methods:
 Neighbor-joining and its variants
- Bayesian method:Badger
- Maximum parsimony based on encoding:
 MPBE, MPME
- Direct optimization method:

BPAnalysis, GRAPPA, MGR

Direct Optimization Methods

Direct Optimization Methods

 Goal: to reconstruct phylogeny with minimum # of rearrangement events

Direct Optimization Methods

- Goal: to reconstruct phylogeny with minimum # of rearrangement events
- Computationally hard even for only three genomes
 - Median problem for three is NP hard under general distance definition
 - Find the content of the median genome to minimize the sum of the distances from the median to the three genomes

Reconstruction Example

 Genome Rearrangements Analysis under Parsimony and other Phylogenetic Algorithms

- Genome Rearrangements Analysis under Parsimony and other Phylogenetic Algorithms
- Started as an effort to reimplement the BPAnalysis of Sankoff and Blanchette

- Genome Rearrangements Analysis under Parsimony and other Phylogenetic Algorithms
- Started as an effort to reimplement the BPAnalysis of Sankoff and Blanchette
- Used algorithmic techniques to improve the speed
 - A tightened lower bound to discard bad trees before scoring them
 - Profiling, cache awareness, etc

Consider each tree topology in turn

- Consider each tree topology in turn
- For each tree
 - Test the lower bound, if it exceeds the best so far, continue to the next tree
 - Initialize the internal nodes by some means
 - Compute medians of three iteratively until no change occurs

- Consider each tree topology in turn
- For each tree
 - Test the lower bound, if it exceeds the best so far, continue to the next tree
 - Initialize the internal nodes by some means
 - Compute medians of three iteratively until no change occurs
- Return the lowest score tree

Computational Challenge

Computational Challenge

Scoring a tree is very expensive

Computational Challenge

- Scoring a tree is very expensive
- When the genomes are distant, a median may take days or months to be solved

Computational Challenge

- Scoring a tree is very expensive
- When the genomes are distant, a median may take days or months to be solved
- It needs to solve the median problems iteratively

Computational Challenge

- Scoring a tree is very expensive
- When the genomes are distant, a median may take days or months to be solved
- It needs to solve the median problems iteratively
- Can we find the tree score without solving the median problems?

Goal: minimize the tree length

- Goal: minimize the tree length
- What do we know?

- Goal: minimize the tree length
- What do we know?
 - The pairwise distance matrix
 - A given tree topology

- Goal: minimize the tree length
- What do we know?
 - The pairwise distance matrix
 - A given tree topology
- Approach:
 - Finding useful constraints
 - Using linear programming method to minimize the tree length

Median Problem

Median Problem

Median Problem

More than 98% cases we have

$$d_{01} + d_{02} + d_{03} = \frac{d_{12} + d_{23} + d_{13}}{2}$$

Constraint on Internal Node

Equations

Equations

Equations

$$d_{2N-5} + d_{2N-4} + d_{2N-3} = \frac{d_{2N-3,N-1} + d_{N-1,N} + d_{2N-3,N}}{2}$$

Problems

Problems

• There are pprox 5N variables, but only N-2 equations \cdots

Problems

- There are pprox 5N variables, but only N-2 equations \cdots
- There are many (and redundant) triangular inequations

Inequality Equations

- We want to pick up a minimum number of inequations to cover all the variables
- We know only the distance matrix and tree topology

• Choices:

for each pair of genomes, find the two shortest paths from one to another, and build one inequation for each path

Inequality Equations

$$d_{1,N-1} \le d_{1,N+2} + \dots + d_{2N-3,N-1}$$
$$d_{1,N-1} \le d_{1,N+2} + \dots + d_{2N-5} + d_{2N-4}$$

Sum-up

- Examine every tree
- ullet For each tree (with N genomes)
 - Minimize the sum of 2N-3 edge lengths
 - $\bullet \approx 5N$ variables total
 - N-2 equations, <2N(N-1) inequations
 - These numbers are relatively small if N < 20
- Use lp_solve to find the length of the tree
- Return tree(s) with the minimum length

Experimental Design

Real datasets—limited samples

Simulation

- Generate a tree (*true tree*) from different topologies: uniform, birth-death, ···
- Assign edge lengths based on the expected evolutionary rate
- Assign gene content to each genome based on the edge length
- Use GRAPPA to find a tree (inferred tree)
- Compare inferred tree with true tree to determine the accuracy

Topological Accuracy

Topological Accuracy

- False positive:
 an edge is in the inferred tree,
 not in the true tree
- False negative:

 an edge is in the true tree,
 not in the inferred tree

Topological Accuracy

- False positive:
 an edge is in the inferred tree,
 not in the true tree
- False negative:

 an edge is in the true tree,
 not in the inferred tree

Goal: to minimize FP and FN

• Number of genomes (N): 12

- Number of genomes (N): 12
- Number of genes (n): 200, 500 and 1000

- Number of genomes (N): 12
- Number of genes (n): 200, 500 and 1000
- Expected # of events on each edge: 0.05n 0.15n

- Number of genomes (N): 12
- Number of genes (n): 200, 500 and 1000
- Expected # of events on each edge: 0.05n 0.15n
- Tree topologies: uniform and birth-death

- Number of genomes (N): 12
- Number of genes (n): 200, 500 and 1000
- Expected # of events on each edge: 0.05n 0.15n
- Tree topologies: uniform and birth-death
- Datasets on each combination: 10

FN (500 genes, BD tree)

FP (500 genes, BD tree)

FN (1000 genes, uniform tree)

FP (1000 genes, uniform tree)

Conclusion

- Linear programming gives us a new and accurate method for difficult datasets
- Can be applied to any distance
- Has potential to be used for large and complex genomes
- Can be extended to solve the median problems