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Wrong-Path Instruction Prefetching [1] 
Summary by Keri Nishimoto 
 
To improve the performance of superscalar 
processors and high speed sequential machines, 
Jim Pierce and Trevor Mudge propose a scheme 
called Wrong-Path Instruction Prefetching to 
fetch instructions from memory into the 
instruction cache before the instructions are 
needed 

Wrong-path prefetching is a combination 
of next-line prefetching and target-always 
prefetching. Next-line prefetching fetches the next 
sequential cache line(s) whenever it is not resident 
in the cache. The target prefetching used in 
wrong-path prefetching fetches the line containing 
the target of a conditional branch. It makes no 
attempt to predict whether or not the branch will 
be taken. It fetches the branch target regardless. 
Thus, for conditional branches both paths are 
always prefetched: the fall-through direction by 
next-line prefetching, and the target line by target 
prefetching. 

Note that this target prefetching used by 
wrong-path prefectching is different from table-
based target-line prefetching, which uses a target 
prefetch table containing current line and 
successor line pairs. Target-line prefetching uses 
the table to prefetch the line that was requested 
next the last time the current line was executed. 
The table and the associated logic used in this 
scheme requires significant additional hardware 
that is not needed in wrong-path prefetching. 

Target prefetching in wrong-path 
prefetching cannot initiate a fetch until the branch 
target is computed. In simple implementations, 
this does not happen until the decode stage. 
Because of the lateness of the fetch, prefetching 
the target line when the branch is taken is 
unproductive. The prefetch request would be 
generated at the same time as the cache miss. For 
this reason, there are no target prefetches for 
unconditional jumps and subroutine calls. One 
possible improvement would be to add a prefetch 
buffer which has the ability to partially decode the 
instructions that are stored there. This would 
allow target prefetches to be initiated earlier. 

Unfortunately this addition caused a slight 
performance gain only when the cache was large. 

The idea behind wrong-path prefetching 
seems counterintuitive. Next-line and target-line 
prefetching try to predict the correct execution 
path and only prefetch down the predicted path 
since fetching down wrong paths would likely 
increase memory traffic and cause cache 
pollution. Wrong-path instruction prefetching, 
however, relies on the tendency that instructions 
accessed on mispredicted paths will later be 
accessed during correct path execution. The 
authors accept the increased memory traffic as a 
necessary cost and conclude that the benefits of 
prefetching overcome the added cache pollution. 

In simulations carried out by the authors 
with various cache parameters, wrong-path 
prefetching performed up to 64% better in terms 
of CPU cycles over no prefetching. It also 
outperformed next-line prefetching, table-based 
target-line prefetching, and a hybrid scheme that 
combines next-line and table-based target-line 
prefetching. 
 

Instruction Prefetching Methods 
Keri Nishimoto 
 
Prefetch algorithms reduce instruction cache 
misses by prefetching instruction lines into the 
cache. Currently, I-cache misses are a significant 
source of performance loss, especially in integer 
and database codes. The performance penalty due 
to these misses is predicted to increase in the 
future due to (1) the increasing performance gap 
between processors and memory and  (2) 
increasing instruction level parallelism [4].  

Many variations of instruction 
prefetching have been proposed. Software-based 
methods rely on the compiler to specify when and 
what to prefetch by inserting explicit prefetch 
instructions into the executable. While very little 
hardware needs to be introduced to take 
advantage of software prefetching, there are 
numerous disadvantages. These include (1) the 
additional overhead of the prefetch instructions, 
(2) the fact that not all compilers on a machine 
may implement prefetching, (3) old binaries are 



 3

not optimized, (4) the limitations in predicting 
behavior at compile time, and (5) the portability 
difficulties over different implementations of the 
ISA. 
Hardware based prefetching does not require 
software support and can be divided into two 
categories:  correlated prefetching and non-
correlated prefetching. Correlated prefetching 
correlates previous cache misses with other 
events, such as old misses (as in Markov 
prefetching [5]) or previous instructions (as in 
branch-history-guided [6] and execution-history-
guided prefetching [4]). This information is 
usually stored in a dedicated table. In non-
correlated prefetching, hardware predicts which 
instructions will be executed in the near future 
and prefetches them. Methods that fall in this 
category are fetch directed instruction  
prefetching [7], next-n-line prefetching, and 
wrong-path prefetching [1].  
 
[Summarized by Abhishek Mitra] 

Tango [2] [14], an on-chip dynamic data 
prefetching mechanism which does not overload 
cache ports, skips through non memory reference 
instructions and builds on the accuracy of the 
branch predictor to implement data prefetching 
for superscalar processors. The prefetch requests 
are scheduled to tango (sic.) with the requests 
from the core to the cache during free time slots. 
   The three components of Tango are the Program 
Progress Graph (PPG), SRPT (Reference 
Prediction Table for Superscalar processors), and 
the PRC (a Prefetch Requests Controller). The 
superscalar processor may issue at most two 
memory reference instructions and one branch 
instruction per cycle.   
   The PPG works as an extension to the Branch 
Target Buffer (BTB), and is a directed graph, with 
nodes labeled as the entry number of a particular 
branch instruction in the BTB/PPG and each edge 
directs to the next branch labeled as <T/NT>, 
<Num> where <T/NT> signifies a Taken / Not 
Taken branch and <Num> is the number of 
instructions between the two branches. The data 
structure for the PPG appends to the regular BTB, 

with entries for taken and not–taken branches and 
the number of instructions spaced in between. The 
PPG utilizes additional 32 bits per entry and is 
generated from the current instruction window of 
the processor.  
   SRPT is a cache, indexing the memory 
reference instructions by two tags, pc-tag 
(address) and pre-pc-tag (BTB index, T/NT, 
mem-ref-num). The mem-ref-num refers to the 
position of the instruction within the basic block 
with respect to other memory reference 
instructions. Prediction is generated by using 
information from previous accesses i.e. the 
‘stride’(difference between last two addresses), 
‘times’(number of iterations already accessed by 
prePC), ‘last-ea’ (effective address) fields and an 
fsm ( a finite state machine which disables 
prefetching only for the while when the last two 
strides differ from each other). When the PC 
accesses a memory reference instruction  the 
SRPT is updated for that entry. 
   A look-ahead mechanism is implemented by a 
prePC which advances through the PPG to 
predicted branches. Simultaneously, the 
corresponding SRPT entries are matched using 
the pre-pc-tag for their branch indexes and 
direction to generate prefetch requests for up to 
two memory reference instructions (dual ported 
memory) per clock cycle. As the prefetch requests 
have a lower priority, the distance between prePC 
and PC is controlled by tango to account for fetch 
latency and other delays. 
   PRC is a prefetch requests controller scheduler 
which works in tandem with four fully associative 
queues and an LRU touch mechanism. 
   The first queue, Req-Q, is a FIFO that stores 
upto four prefetch requests to the data cache. 
Redundant requests are avoided by a search and 
exclusion. Wait-Q, is a buffer, which stores 
missed prefetch requests to the main memory 
along with devoting two priority entries for core 
requests. The prefetch requests to the main 
memory are also duplicated on the Track-Q and 
removed therefrom when the memory services the 
requests.  
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   A wrong prediction leads to flushing of prefetch 
requests from the Wait-Q and Req-Q. A full Req-
Q or a Track-Q stops the prePC from advancing. 
   Filter-cache, is an unique FIFO buffer to store 
prefetch requests for data already present in the 
cache. Every entry has a decrementing counter 
initialized to ‘fetch latency + fetch spacing’. It 
eliminates redundant requests which arrive as a 
principle of locality and assists superscalar 
processors by virtue of removing redundant 
requests and reducing memory traffic. 
   Finally the prefetch requests exclusive of Req-
Q, Wait-Q, Track-Q and Filter-cache are sent to 
the Req-Q buffer. 
   LRU touch is done on a block, whenever a 
prefetch request results in a cache hit on the block 
because the block would be accessed sooner or 
later and it would not be a nice idea to get it 
evicted. 
 
A very aggressive prediction scheme which 
doesn’t wait for stride stabilization, coupled with 
highly efficient cache port bandwidth usage make 
tango a high-performance pre-fetch mechanism 
for superscalars so much so that a reduction in the 
number of memory transactions compared to a 
base system and an overall performance 
improvement of 1.36 (as an improvement in CPI) 
is claimed by the authors. 

 
Hardware-Based Data Prefetching [15] 
   Hardware based data pre-fetching avoid 
additional software / instruction overheads, and 
dynamically prefetch data from the main memory 
and into the data cache. The tango scheme is 
based on previous work documented in [  ]. The 
authors have cited three types of memory access 
patterns viz. scalar, zero stride and constant stride, 
and the third one is the case which is benefited by 
prefetching. 
  The authors have classified hardware based 
prefetching into three schemes namely, Basic 
Reference Prediction, Lookahead Reference 
Prediction and Correlated Reference Prediction. 
The tango mechanism builds on the first two 
prediction methods and hence they are touched 
upon below.  

Basic reference prediction utilizes a Reference 
prediction table (SRPT builds on this idea) tagged 
with the PC of a memory reference instruction 
and stores the previous address, stride and the fsm 
(as in tango). Prefetching is done when stride 
stabilizes. There is a possibility of timing 
mismatch between arrival of prefetched data and 
its use in an instruction, especially if the 
instruction is referenced again before a time less 
than or equal to the memory latency. 
   Lookahead reference prediction is advancement 
over the above mentioned scheme and it 
implements a Look Ahead Program Counter (the 
prePC builds on this idea) that accesses the BTB 
to move onto the next predicted iterations or basic 
blocks and start prefetching early enough. When 
the PC catches up with addresses visited by LA-
PC, the data is already in the cache. The ideal 
lookahead distance to be maintained by this 
scheme should be equal to the latency of the next 
memory hierarchy.  
 
Programming Inference: Documented on  Page 8. 
[End of Abhishek Mitra’s Work] 
 
Distributed Prefetch-buffer/Cache Design for 
High Performance Memory Systems[3] 
Summary by Som C. Neema 
 
The authors have addressed the issue of 
disproportionate growth rates between the CPU 
speed and Main Memory speed. 

They propose a hardware data prefetching 
technique and the associated memory system 
architecture that performs much better than 
existing methods for data read requests that do not 
have temporal or spatial localities of accesses but 
which repeat over time. 

The essential scheme is to predict future 
CPU read requests to main memory and prefetch 
the data into small SRAM prefetch-buffers that 
are integrated on each DRAM IC. By this 
mechanism the access latency for the DRAM is 
improved and the CPU-Memory bandwidth is 
conserved, thus reducing the wrong prediction 
penalty. A correlation based prefetching scheme 
is used to detect patterns across loop levels.  The 
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solution performs better than the alternative of 
predicting using one block look-ahead (OBL) or 
stream buffers in large L2 caches that are 
ineffective for programs that traverse large data 
structures and have complex data references. 

The read request patterns are stored in a 
prediction cache by storing the physical 
addresses, clustering the addresses into blocks, to 
reduce the number of unique addresses. A table 
update mechanism tracks the program execution 
and uses the past address request patterns to 
predict future requests. Large prefetch buffers 
reduce the number of address bits for each 
prediction.  

Prediction is done using a table lookup 
method that simultaneously prefetches all the 
guessed block addresses of the next reference 
based on the present entry into the SRAM 
prefetch buffers. Storing the memory access that 
follows a memory-read-access does table update.  

The authors present a design example 
using 64 MB EDRAM ICs with integrated 32 KB 
SRAM buffers. The memory is 4-way interleaved 
but there are no concurrent accesses to banks. The 
address cluster size is 256 bytes. The prefetch 
block size is 2 KB and hence the number of 
guesses is 4 for each entry. 

Simulations were done on nine programs 
including 7 from SPEC95, for 2 billion 
instructions using SHADE, (simulator of SPARC 
instruction set) to extract data references and 
cycle timing, and ldvsim, to simulate the memory 
system. Calculations of CPI and Cycles per 
memory reference show that the technique 
performs marginally better compared to the 
traditional L2 cache for   7 programs that perform 
well with L2, but there is significant speedup for 
2 programs in the benchmark suite. 

The authors conclude that their scheme is 
able to accurately predict CPU read requests to 
main memory, has a very low prediction miss 
penalty and conserves bus resources. They also 
contend that the proposed memory system 
architecture is compatible with conventional 
microprocessors and it could be possible to 
further improve prediction consistency by 
improved prediction techniques.  

 
RELATED WORK (thorough part) 

Som C. Neema 
 
Hardware data prefetching techniques can be 
sequential or a variant: basic, lookahead and 
correlated (the scheme in [3]). The basis for all 
the three variations is a Reference Prediction 
Table (RPT) that holds data memory access 
patterns[8]. 
 Linked Data Structures (LDS) like trees 
and lists have complex and frequent memory 
access patterns with data dependencies that 
require pointer indirection requiring specialized 
prefetching techniques.  
 Prefetching schemes could be processor 
side prefetching or memory side prefetching 
depending on where the prefetches are 
initiated[9].  

Yang and Lebeck[10] present a memory 
side-prefetching scheme with a prefetch engine at 
each level of the memory hierarchy that executes 
the load instructions that traverse the LDS, 
independent of the CPU and sends the data to the 
L1 cache or a prefetch buffer. 
Hughes and Adve[9] also propose a memory side 
scheme scheme in which the processor sends 
prefetch commands encoding the traversals to the 
prefetch engine that runs ahead of the processor 
and pipelines data to the CPU.. 
  Roth et al[11] presents a dependence 
based prefetching technique, which uses the 
relationship between loads that produce addresses 
and those that use them. To hide the load latencies 
of LDS traversals it uses a small prefetch engine 
that dynamically determines the program code 
that computes addresses and then speculatively 
executes it parallel to the program.  
 M. Karlsson et al [12] discusses use of 
jump pointers to access nodes down a linked list 
and prefetch in parallel nodes that will be 
accessed in the future into prefetch arrays similar 
to prefetch buffer/cache. This technique is 
effective also for short lists and for small 
computations per node. 
 Data prefetching may demonstrate side 
effects of cache pollution and increased 
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consumption of processor memory bandwidth and 
congestion[1]  

 
A Comparison of the Papers 

[1], [2], [14] and [3] 
 
A high misprediction penalty caused by a cache 
miss limits the performance of the processors. 
The three papers discuss different prefetching 
techniques to overcome this problem. [1] 
discusses a scheme for instruction prefetching 
while [2], [14] and [3]  propose data prefetching 
techniques. While instructions exhibit a large 
locality of reference it is not so for data and 
sequential techniques do not give the best results.     
  Tango uses branch prediction to prefetch the 
data whereas wrong path prefetching does not use 
any predictors but always fetches the target and 
fall through instructions in conditional branches 
to L1(by a combination of next-line and target-
always schemes) . Distributed prefetch-buffer 
/cache design [3] uses a correlation scheme to 
lookup the predicted block address from the 
predictor table based on the current address. 
   The scheme in [1] requires minimal additional 
hardware whereas Tango[2] uses an on chip 
scheme that requires additional hardware or 
modifications to implement its PPG (Program 
Progress Graph), SRPT (Cache), and the PRC (a 
Prefetch Requests Controller) (the size of a 4KB 
dual port memory). Distributed prefetch-
buffer/cache design[3] also requires a distributed 
cache with an integrated SRAM prefetch buffer 
on the DRAM chip and a prediction - prefetch 
controller.  Hence while Wrong-path instruction 
prefetching [1] tries to avoid misses in the 
instruction cache by inserting extra fetch 
instructions, Distributed prefetch-buffer /cache 
design [3] tries to reduce the memory access 
latency and Tango tries to make good use of the 
slack time and hardware resources not being used 
for main computation. 
   Wrong path instruction prefetching increases 
cache pollution because it prefetches instructions 
that might not be required. Tango uses a LRU 
touch mechanism to promote cache data so that it 
is not replaced but like the distributed cache 

mechanism it does not prefetch data to the L1 
cache. The distributed cache mechanism tries to 
conserve the memory CPU bandwidth, but 
prefetch requests may generate excess traffic for 
data which may not be utilized later. 
   Tango employs a complex scheme to search for 
memory reference instructions and modifying the 
prediction table to generate prefetch requests. 
Distributed buffer uses a correlation scheme to 
look up a table to predict and update. 
   Target prefetching in [1] initiates a fetch only 
after the target is computed (ID stage) whereas [3]  
initiates as soon as the current address is available 
(IF stage). For [3] performance improvement 
happens best for programs that have no localities 
of accesses but have time repeated data read 
requests.  Tango [2] is most effective when data is 
accessed in constant strides. [End of ‘Group 
effort’] 
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Programming Inference (Abhishek Mitra) 
 
We implement a small program which multiplies two matrices B, C of sizes 200x200 and 
stores into matrix A of same size. This is a good example when data is accessed in 
constant strides for matrices B,C.  
Pentium 4 processor makes use of hardware pre-fetching (as documented by Intel) and its 
efficacy could be assessed with this small program. We use Intel VTune Performance 
Analyzer v6.1 which collects performance data with respect to an application using 
counters present on the processor. 
We measure the number of Loads generated by this program, and the L1 cache miss rate. 
The 1st-level cache on the Intel Pentium 4 processor contains data only, not instructions. 
If the data is not found in the 1st-level cache, the processor will look in the 2nd-level 
cache. “Pentium 4 reference, Intel VTune Perf. Analyzer v6.1” 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
 float a[200][200],b[200][200],c[200][200];//each element = 32bits 
 int i,j,k; 
 for (i=1;i<200;i++) 
  for (j=1;j<200;j++) 
   b[i][j]=c[j][i]=rand();//fill in matrices with random 
data 
  
 for (i=1;i<200;i++) /* Loop to calculate matrix multiplication*/ 
  for (j=1;j<200;j++) 
   for (k=1;k<200;k++) 
    a[i][j]+=b[i][k] * c[k][j]; 
   
 printf("done  ");//scanf("%d",&a); 
 return 0; 
} 
 
Total Loads to L1 cache: 102,883,050 
Total Stores in L1 cache:   16,318,214 
L1 Data cache Load miss: 8,534,725 
L1 Load miss rate = 0.0829 
L1 Load hit rate =  0.917 
 
We could not analyze L1 data cache store misses as they were not available in the 
software.  
Conclusion: Considering that stores are a small percentage of the total accesses and the 
resulting error due to store misses would be negligible, the hit rate of Pentium 4 is lower 
than what tango has to offer for all cases except for spice2g6 simulation [14].  
The block size for the cache in Pentium 4 is 64 bytes and its size is 8Kbyte resulting in 
128 blocks versus the 32KByte, 32byte block size for the tango simulations. In this case 
many cache blocks are in use by other applications such as the O.S., VTune, etc. It may 
be possible that this processor may benefit from a larger L1 cache, but its ramification on 
the clock rate needs to be investigated.  
 


