
 1

CS203A FALL 2003 PROJECT
Term paper on micro-architecture

Asst. Prof. Jun Yang

Department of Computer Science
University of California, Riverside

PREFETCHING

Keri Nishimoto
Abhishek Mitra
Som C. Neema

 2

Wrong-Path Instruction Prefetching [1]
Summary by Keri Nishimoto

To improve the performance of superscalar
processors and high speed sequential machines,
Jim Pierce and Trevor Mudge propose a scheme
called Wrong-Path Instruction Prefetching to
fetch instructions from memory into the
instruction cache before the instructions are
needed

Wrong-path prefetching is a combination
of next-line prefetching and target-always
prefetching. Next-line prefetching fetches the next
sequential cache line(s) whenever it is not resident
in the cache. The target prefetching used in
wrong-path prefetching fetches the line containing
the target of a conditional branch. It makes no
attempt to predict whether or not the branch will
be taken. It fetches the branch target regardless.
Thus, for conditional branches both paths are
always prefetched: the fall-through direction by
next-line prefetching, and the target line by target
prefetching.

Note that this target prefetching used by
wrong-path prefectching is different from table-
based target-line prefetching, which uses a target
prefetch table containing current line and
successor line pairs. Target-line prefetching uses
the table to prefetch the line that was requested
next the last time the current line was executed.
The table and the associated logic used in this
scheme requires significant additional hardware
that is not needed in wrong-path prefetching.

Target prefetching in wrong-path
prefetching cannot initiate a fetch until the branch
target is computed. In simple implementations,
this does not happen until the decode stage.
Because of the lateness of the fetch, prefetching
the target line when the branch is taken is
unproductive. The prefetch request would be
generated at the same time as the cache miss. For
this reason, there are no target prefetches for
unconditional jumps and subroutine calls. One
possible improvement would be to add a prefetch
buffer which has the ability to partially decode the
instructions that are stored there. This would
allow target prefetches to be initiated earlier.

Unfortunately this addition caused a slight
performance gain only when the cache was large.

The idea behind wrong-path prefetching
seems counterintuitive. Next-line and target-line
prefetching try to predict the correct execution
path and only prefetch down the predicted path
since fetching down wrong paths would likely
increase memory traffic and cause cache
pollution. Wrong-path instruction prefetching,
however, relies on the tendency that instructions
accessed on mispredicted paths will later be
accessed during correct path execution. The
authors accept the increased memory traffic as a
necessary cost and conclude that the benefits of
prefetching overcome the added cache pollution.

In simulations carried out by the authors
with various cache parameters, wrong-path
prefetching performed up to 64% better in terms
of CPU cycles over no prefetching. It also
outperformed next-line prefetching, table-based
target-line prefetching, and a hybrid scheme that
combines next-line and table-based target-line
prefetching.

Instruction Prefetching Methods
Keri Nishimoto

Prefetch algorithms reduce instruction cache
misses by prefetching instruction lines into the
cache. Currently, I-cache misses are a significant
source of performance loss, especially in integer
and database codes. The performance penalty due
to these misses is predicted to increase in the
future due to (1) the increasing performance gap
between processors and memory and (2)
increasing instruction level parallelism [4].

Many variations of instruction
prefetching have been proposed. Software-based
methods rely on the compiler to specify when and
what to prefetch by inserting explicit prefetch
instructions into the executable. While very little
hardware needs to be introduced to take
advantage of software prefetching, there are
numerous disadvantages. These include (1) the
additional overhead of the prefetch instructions,
(2) the fact that not all compilers on a machine
may implement prefetching, (3) old binaries are

 3

not optimized, (4) the limitations in predicting
behavior at compile time, and (5) the portability
difficulties over different implementations of the
ISA.
Hardware based prefetching does not require
software support and can be divided into two
categories: correlated prefetching and non-
correlated prefetching. Correlated prefetching
correlates previous cache misses with other
events, such as old misses (as in Markov
prefetching [5]) or previous instructions (as in
branch-history-guided [6] and execution-history-
guided prefetching [4]). This information is
usually stored in a dedicated table. In non-
correlated prefetching, hardware predicts which
instructions will be executed in the near future
and prefetches them. Methods that fall in this
category are fetch directed instruction
prefetching [7], next-n-line prefetching, and
wrong-path prefetching [1].

[Summarized by Abhishek Mitra]

Tango [2] [14], an on-chip dynamic data
prefetching mechanism which does not overload
cache ports, skips through non memory reference
instructions and builds on the accuracy of the
branch predictor to implement data prefetching
for superscalar processors. The prefetch requests
are scheduled to tango (sic.) with the requests
from the core to the cache during free time slots.
 The three components of Tango are the Program
Progress Graph (PPG), SRPT (Reference
Prediction Table for Superscalar processors), and
the PRC (a Prefetch Requests Controller). The
superscalar processor may issue at most two
memory reference instructions and one branch
instruction per cycle.
 The PPG works as an extension to the Branch
Target Buffer (BTB), and is a directed graph, with
nodes labeled as the entry number of a particular
branch instruction in the BTB/PPG and each edge
directs to the next branch labeled as <T/NT>,
<Num> where <T/NT> signifies a Taken / Not
Taken branch and <Num> is the number of
instructions between the two branches. The data
structure for the PPG appends to the regular BTB,

with entries for taken and not–taken branches and
the number of instructions spaced in between. The
PPG utilizes additional 32 bits per entry and is
generated from the current instruction window of
the processor.
 SRPT is a cache, indexing the memory
reference instructions by two tags, pc-tag
(address) and pre-pc-tag (BTB index, T/NT,
mem-ref-num). The mem-ref-num refers to the
position of the instruction within the basic block
with respect to other memory reference
instructions. Prediction is generated by using
information from previous accesses i.e. the
‘stride’(difference between last two addresses),
‘times’(number of iterations already accessed by
prePC), ‘last-ea’ (effective address) fields and an
fsm (a finite state machine which disables
prefetching only for the while when the last two
strides differ from each other). When the PC
accesses a memory reference instruction the
SRPT is updated for that entry.
 A look-ahead mechanism is implemented by a
prePC which advances through the PPG to
predicted branches. Simultaneously, the
corresponding SRPT entries are matched using
the pre-pc-tag for their branch indexes and
direction to generate prefetch requests for up to
two memory reference instructions (dual ported
memory) per clock cycle. As the prefetch requests
have a lower priority, the distance between prePC
and PC is controlled by tango to account for fetch
latency and other delays.
 PRC is a prefetch requests controller scheduler
which works in tandem with four fully associative
queues and an LRU touch mechanism.
 The first queue, Req-Q, is a FIFO that stores
upto four prefetch requests to the data cache.
Redundant requests are avoided by a search and
exclusion. Wait-Q, is a buffer, which stores
missed prefetch requests to the main memory
along with devoting two priority entries for core
requests. The prefetch requests to the main
memory are also duplicated on the Track-Q and
removed therefrom when the memory services the
requests.

 4

 A wrong prediction leads to flushing of prefetch
requests from the Wait-Q and Req-Q. A full Req-
Q or a Track-Q stops the prePC from advancing.
 Filter-cache, is an unique FIFO buffer to store
prefetch requests for data already present in the
cache. Every entry has a decrementing counter
initialized to ‘fetch latency + fetch spacing’. It
eliminates redundant requests which arrive as a
principle of locality and assists superscalar
processors by virtue of removing redundant
requests and reducing memory traffic.
 Finally the prefetch requests exclusive of Req-
Q, Wait-Q, Track-Q and Filter-cache are sent to
the Req-Q buffer.
 LRU touch is done on a block, whenever a
prefetch request results in a cache hit on the block
because the block would be accessed sooner or
later and it would not be a nice idea to get it
evicted.

A very aggressive prediction scheme which
doesn’t wait for stride stabilization, coupled with
highly efficient cache port bandwidth usage make
tango a high-performance pre-fetch mechanism
for superscalars so much so that a reduction in the
number of memory transactions compared to a
base system and an overall performance
improvement of 1.36 (as an improvement in CPI)
is claimed by the authors.

Hardware-Based Data Prefetching [15]
 Hardware based data pre-fetching avoid
additional software / instruction overheads, and
dynamically prefetch data from the main memory
and into the data cache. The tango scheme is
based on previous work documented in []. The
authors have cited three types of memory access
patterns viz. scalar, zero stride and constant stride,
and the third one is the case which is benefited by
prefetching.
 The authors have classified hardware based
prefetching into three schemes namely, Basic
Reference Prediction, Lookahead Reference
Prediction and Correlated Reference Prediction.
The tango mechanism builds on the first two
prediction methods and hence they are touched
upon below.

Basic reference prediction utilizes a Reference
prediction table (SRPT builds on this idea) tagged
with the PC of a memory reference instruction
and stores the previous address, stride and the fsm
(as in tango). Prefetching is done when stride
stabilizes. There is a possibility of timing
mismatch between arrival of prefetched data and
its use in an instruction, especially if the
instruction is referenced again before a time less
than or equal to the memory latency.
 Lookahead reference prediction is advancement
over the above mentioned scheme and it
implements a Look Ahead Program Counter (the
prePC builds on this idea) that accesses the BTB
to move onto the next predicted iterations or basic
blocks and start prefetching early enough. When
the PC catches up with addresses visited by LA-
PC, the data is already in the cache. The ideal
lookahead distance to be maintained by this
scheme should be equal to the latency of the next
memory hierarchy.

Programming Inference: Documented on Page 8.
[End of Abhishek Mitra’s Work]

Distributed Prefetch-buffer/Cache Design for
High Performance Memory Systems[3]
Summary by Som C. Neema

The authors have addressed the issue of
disproportionate growth rates between the CPU
speed and Main Memory speed.

They propose a hardware data prefetching
technique and the associated memory system
architecture that performs much better than
existing methods for data read requests that do not
have temporal or spatial localities of accesses but
which repeat over time.

The essential scheme is to predict future
CPU read requests to main memory and prefetch
the data into small SRAM prefetch-buffers that
are integrated on each DRAM IC. By this
mechanism the access latency for the DRAM is
improved and the CPU-Memory bandwidth is
conserved, thus reducing the wrong prediction
penalty. A correlation based prefetching scheme
is used to detect patterns across loop levels. The

 5

solution performs better than the alternative of
predicting using one block look-ahead (OBL) or
stream buffers in large L2 caches that are
ineffective for programs that traverse large data
structures and have complex data references.

The read request patterns are stored in a
prediction cache by storing the physical
addresses, clustering the addresses into blocks, to
reduce the number of unique addresses. A table
update mechanism tracks the program execution
and uses the past address request patterns to
predict future requests. Large prefetch buffers
reduce the number of address bits for each
prediction.

Prediction is done using a table lookup
method that simultaneously prefetches all the
guessed block addresses of the next reference
based on the present entry into the SRAM
prefetch buffers. Storing the memory access that
follows a memory-read-access does table update.

The authors present a design example
using 64 MB EDRAM ICs with integrated 32 KB
SRAM buffers. The memory is 4-way interleaved
but there are no concurrent accesses to banks. The
address cluster size is 256 bytes. The prefetch
block size is 2 KB and hence the number of
guesses is 4 for each entry.

Simulations were done on nine programs
including 7 from SPEC95, for 2 billion
instructions using SHADE, (simulator of SPARC
instruction set) to extract data references and
cycle timing, and ldvsim, to simulate the memory
system. Calculations of CPI and Cycles per
memory reference show that the technique
performs marginally better compared to the
traditional L2 cache for 7 programs that perform
well with L2, but there is significant speedup for
2 programs in the benchmark suite.

The authors conclude that their scheme is
able to accurately predict CPU read requests to
main memory, has a very low prediction miss
penalty and conserves bus resources. They also
contend that the proposed memory system
architecture is compatible with conventional
microprocessors and it could be possible to
further improve prediction consistency by
improved prediction techniques.

RELATED WORK (thorough part)

Som C. Neema

Hardware data prefetching techniques can be
sequential or a variant: basic, lookahead and
correlated (the scheme in [3]). The basis for all
the three variations is a Reference Prediction
Table (RPT) that holds data memory access
patterns[8].
 Linked Data Structures (LDS) like trees
and lists have complex and frequent memory
access patterns with data dependencies that
require pointer indirection requiring specialized
prefetching techniques.
 Prefetching schemes could be processor
side prefetching or memory side prefetching
depending on where the prefetches are
initiated[9].

Yang and Lebeck[10] present a memory
side-prefetching scheme with a prefetch engine at
each level of the memory hierarchy that executes
the load instructions that traverse the LDS,
independent of the CPU and sends the data to the
L1 cache or a prefetch buffer.
Hughes and Adve[9] also propose a memory side
scheme scheme in which the processor sends
prefetch commands encoding the traversals to the
prefetch engine that runs ahead of the processor
and pipelines data to the CPU..
 Roth et al[11] presents a dependence
based prefetching technique, which uses the
relationship between loads that produce addresses
and those that use them. To hide the load latencies
of LDS traversals it uses a small prefetch engine
that dynamically determines the program code
that computes addresses and then speculatively
executes it parallel to the program.
 M. Karlsson et al [12] discusses use of
jump pointers to access nodes down a linked list
and prefetch in parallel nodes that will be
accessed in the future into prefetch arrays similar
to prefetch buffer/cache. This technique is
effective also for short lists and for small
computations per node.
 Data prefetching may demonstrate side
effects of cache pollution and increased

 6

consumption of processor memory bandwidth and
congestion[1]

A Comparison of the Papers

[1], [2], [14] and [3]

A high misprediction penalty caused by a cache
miss limits the performance of the processors.
The three papers discuss different prefetching
techniques to overcome this problem. [1]
discusses a scheme for instruction prefetching
while [2], [14] and [3] propose data prefetching
techniques. While instructions exhibit a large
locality of reference it is not so for data and
sequential techniques do not give the best results.
 Tango uses branch prediction to prefetch the
data whereas wrong path prefetching does not use
any predictors but always fetches the target and
fall through instructions in conditional branches
to L1(by a combination of next-line and target-
always schemes) . Distributed prefetch-buffer
/cache design [3] uses a correlation scheme to
lookup the predicted block address from the
predictor table based on the current address.
 The scheme in [1] requires minimal additional
hardware whereas Tango[2] uses an on chip
scheme that requires additional hardware or
modifications to implement its PPG (Program
Progress Graph), SRPT (Cache), and the PRC (a
Prefetch Requests Controller) (the size of a 4KB
dual port memory). Distributed prefetch-
buffer/cache design[3] also requires a distributed
cache with an integrated SRAM prefetch buffer
on the DRAM chip and a prediction - prefetch
controller. Hence while Wrong-path instruction
prefetching [1] tries to avoid misses in the
instruction cache by inserting extra fetch
instructions, Distributed prefetch-buffer /cache
design [3] tries to reduce the memory access
latency and Tango tries to make good use of the
slack time and hardware resources not being used
for main computation.
 Wrong path instruction prefetching increases
cache pollution because it prefetches instructions
that might not be required. Tango uses a LRU
touch mechanism to promote cache data so that it
is not replaced but like the distributed cache

mechanism it does not prefetch data to the L1
cache. The distributed cache mechanism tries to
conserve the memory CPU bandwidth, but
prefetch requests may generate excess traffic for
data which may not be utilized later.
 Tango employs a complex scheme to search for
memory reference instructions and modifying the
prediction table to generate prefetch requests.
Distributed buffer uses a correlation scheme to
look up a table to predict and update.
 Target prefetching in [1] initiates a fetch only
after the target is computed (ID stage) whereas [3]
initiates as soon as the current address is available
(IF stage). For [3] performance improvement
happens best for programs that have no localities
of accesses but have time repeated data read
requests. Tango [2] is most effective when data is
accessed in constant strides. [End of ‘Group
effort’]

References

[1] J. Pierce and T.N. Mudge. Wrong-path
instruction prefetching. In International
Symposium on Microarchitecture, pages 165-175,
1996.
[2] S. Pintar, A. Yoaz. Tango: a hardware-based
data prefetching technique for superscalar
processors. In Proceedings of the 29th Annual
International Symposium on Microarchitecture,
pages 214-225. December, 1996.
[3] T. Alexander, G. Kedem. Distributed prefetch-
buffer/cache design for high performance memory
systems. Proceedings of the Second International
Symposium on High-Performance Computer
Architecture, San Jose, CA, USA, February 1996.
[4] Y. Zhang, S. Haga, and R. Barua. Execution
history guided prefetching. In Proceedings of the
16th international conference on Supercomputing,
pages 199-208, New York, New York, USA,
2002.
[5] D. Joseph and D. Grunwald. Prefetching using
markov predictors. IEEE Transactions on
Computers, 48(2):121-133, 1999.
[6] V, Srinivasan, E.S. Davidson, G.S. Tyson.
Branch History Guided Instruction Prefetching. In
proceedings of the 7th International Conference

 7

on High Performance Computer Architecture
(HPCA), pages 291-300, Monterrey, Mexico,
January 2001.

[7] G. Reinman, B. Calder and T. Austin. Fetch
Directed Instruction Prefetching. In Proceedings
of the 32nd Annual ACM/IEEE international
symposium on microarchitecture on MICRO-32,
pages 16-27, Haifa, Israel, November 1999.
[8] J-L. Baer and T-F. Chen. An effective on-chip
preloading scheme to reduce data access penalty.
In Proceedings of Supercomputing '91, 1991.
[9] C. J. Hughes and S. V. Adve. Memory Side
Prefetching for Linked Data Structures,
Provisionally accepted (subject to minor
revisions) for the Journal of Parallel and
Distributed Computing (JPDC). Available as
Department of Computer Science Technical
Report UIUCDCS-R-2001-2221, University of
Illinois at Urbana-Champaign, May, 2001.
[10] C-L Yang and A. R. Lebeck, Push vs. Pull:
Data Movement for Linked Data Structures,
International Conference on Supercomputing
2000 (ICS '00), May 2000.

[11] A. Roth, A. Moshovos and G. S. Sohi.
Dependence Based Prefetching for Linked Data
Structures In proc. of ASPLOS-8,Oct.4-7, 1998
[12] M. Karlsson, F. Dahlgren and P. Stenström.
A Prefetching Technique for Irregular Accesses to
Linked Data Structures. In the Proceedings of the
6th International Conference on High
Performance Computer Architecture (HPCA'6),
pp. 206-217, January 2000.
[13] S.P. VanderWiel, D.J. Lilja. Data Prefetch
Mechanisms ACM Computing Surveys (CSUR)
Volume 32 , Issue 2 Pages: 174 - 199 (June
2000)
[14] S.S. Pinter and A. Yoaz. Tango: a hardware-
based data prefetching technique for superscalar
processors. Technical Report TR88.371, IBM
Research Center, Haifa, Israel, September 1996.
[15] T.Chen and J.Baer. Effective hardware-based
data prefetching for high-performance processors.
IEEE Transactions on Computers, 44(5):609 –
623, May. 1995.

Cover page Illustration: courtesy “Fetch
Softworks”

 8

Programming Inference (Abhishek Mitra)

We implement a small program which multiplies two matrices B, C of sizes 200x200 and
stores into matrix A of same size. This is a good example when data is accessed in
constant strides for matrices B,C.
Pentium 4 processor makes use of hardware pre-fetching (as documented by Intel) and its
efficacy could be assessed with this small program. We use Intel VTune Performance
Analyzer v6.1 which collects performance data with respect to an application using
counters present on the processor.
We measure the number of Loads generated by this program, and the L1 cache miss rate.
The 1st-level cache on the Intel Pentium 4 processor contains data only, not instructions.
If the data is not found in the 1st-level cache, the processor will look in the 2nd-level
cache. “Pentium 4 reference, Intel VTune Perf. Analyzer v6.1”

int _tmain(int argc, _TCHAR* argv[])
{
 float a[200][200],b[200][200],c[200][200];//each element = 32bits
 int i,j,k;
 for (i=1;i<200;i++)
 for (j=1;j<200;j++)
 b[i][j]=c[j][i]=rand();//fill in matrices with random
data

 for (i=1;i<200;i++) /* Loop to calculate matrix multiplication*/
 for (j=1;j<200;j++)
 for (k=1;k<200;k++)
 a[i][j]+=b[i][k] * c[k][j];

 printf("done ");//scanf("%d",&a);
 return 0;
}

Total Loads to L1 cache: 102,883,050
Total Stores in L1 cache: 16,318,214
L1 Data cache Load miss: 8,534,725
L1 Load miss rate = 0.0829
L1 Load hit rate = 0.917

We could not analyze L1 data cache store misses as they were not available in the
software.
Conclusion: Considering that stores are a small percentage of the total accesses and the
resulting error due to store misses would be negligible, the hit rate of Pentium 4 is lower
than what tango has to offer for all cases except for spice2g6 simulation [14].
The block size for the cache in Pentium 4 is 64 bytes and its size is 8Kbyte resulting in
128 blocks versus the 32KByte, 32byte block size for the tango simulations. In this case
many cache blocks are in use by other applications such as the O.S., VTune, etc. It may
be possible that this processor may benefit from a larger L1 cache, but its ramification on
the clock rate needs to be investigated.

