
Benchmark Study on Distributed XML
Filtering Using Hadoop Distribution
Environment

Sanjay Kulhari, Jian Wen
UC Riverside

Team

Sanjay Kulhari
M.S. student, CS
U C Riverside

Jian Wen
Ph.D. student, CS
U C Riverside

Outline

 Pub/Sub Systems
 Project Overview and Goals
 Theoretical Core: XML Filtering
 Implementation:

 single-threaded, multi-threaded, MR

 Experimental Evaluation
 Conclusions and Future Work.

Pub/Sub Systems: Motivation

 Think about the following Google’s services

Input queries and get
results!

Register your interests and
get updates!

Pub/Sub Systems: Properties

 Compared with traditional search services:

Traditional Query Pub/Sub

Documents are known. Queries are known.

Queries may come any time. Documents are feed as a
stream.

Users need quick answers.
(always!)

Real time (a log monitoring
system) or non-real time
(Google Group…)

Architecture of a Pub-Sub System

XML
Queries

XML Docs

XML Filters

Project Overview and Goals

 To provide distributed XML filtering with high
scalability on large clusters.
 XML filtering is a resource intensive operation.
 Number of profiles to be matched can be huge.
 Length of the profile can be huge.

 In our project, the scalability of the YFilter is
checked.
 Three benchmark platforms: single-threaded, multi-

threaded, and map/reduce.
 Goal: Any gains from distributing the algorithm?

Theoretical Core: XML Filtering

 Documents are matched to specified XPath
queries

 Required for publish-subscribe systems
 Index is created on available subscription

requests (XPath profiles)

Theoretical Core: Filtering Algorithms

 There are many existing works on filtering
algorithms:
 Software: Profiles are indexed (as finite state machine,

for example).

 Hardware: Profiles are mapped into FPGA devices.

 Our choice: YFilter
 Parallel-able.

 Efficient.

 Easy to implement.

Theoretical Core: YFilter (Original)

 Profiles are indexed as a NFA in advance.
 Documents then are fed into the filter.
 The matching query is processed by

traversing the NFA.

Theoretical Core: YFilter (Original)

 NFA built in YFilter

Theoretical Core: YFilter (Parallel)

 YFilter is easy to be paralleled: profiles can
be divided into parts and be indexed
separately.

Project Implementations

 Three benchmark platforms are implemented
in our project:
 Single-threaded: Directly apply the YFilter on the

profiles and document stream.
 Multi-threaded: Parallel YFilter onto different

threads.
 Map/Reduce: Parallel YFilter onto different

machines (currently in pseudo-distributed
environment).

Benchmark 1: Single Thread

 The index (NFA) is built once on the whole set of
profiles.

 Documents then are streamed into the YFilter for
matching.

 Matching results then are returned by YFilter.

Benchmark 2: Multiple Threads

 Profiles are split into parts, and each part of the profiles
are used to build a NFA separately.

 Each YFilter instance listens a port for income
documents, then it outputs the results through the
socket.

Benchmark 3: Map/Reduce

 Same strategy as the multi-threaded version, however
all process are handled by Hadoop.

 Profile splitting: Profiles are read line by line with line
number as the key and profile as the value.
 Map: For each profile, assign a new key using (old_key %

split_num)
 Reduce: For all profiles with the same key, output them into

a file.
 Output: Separated profiles, each with profiles having the

same (old_key % split_num) value.

Benchmark 3: Map/Reduce

 Document matching: Split profiles are read file by file
with file number as the key and profiles as the value.
 Map: For each set of profiles, run YFilter on the document

(fed as a configuration of the job), and output the old_key
of the matching profile as the key and the file number as
the values.

 Reduce: Do nothing.
 Output: All keys (line numbers) of matching profiles.

Benchmark 3: Map/Reduce

Experimental Evaluation

 Hardware:
 Macbook 2.2 GHz Intel Core 2 Duo
 4G 667 MHz DDR2 SDRAM

 Software:
 Java 1.6.0_17, 1GB heap size
 Cloudera Hadoop Distribution (0.20.1) in a virtual machine.

 Data:
 XML docs: SIGMOD Record (9 files).
 Profiles: 25K and 50K profiles on SIGMOD Record.

Experimental Evaluation

 Since all tests are
now running on a
single machine,
any attempts on
parallel may
decrease the
performance.

 Although the CPU
is duo core, many
administrative
costs may
decrease the
performance
significantly.

Experimental Evaluation

Experimental Evaluation

There are memory
failures, and jobs

failed too.

Experimental Evaluation

Experimental Evaluation

There are memory
failures but
recovered.

Interesting Stuffs

 Run-out-of-memory: We encountered this problem in all
the three benchmarks, however Hadoop is much robust
on this:
 Smaller profile split
 Map phase scheduler uses the memory wisely.

 Race-condition: since the YFilter code we are using is not
thread-safe, in multi-threaded version race-condition
messes the results; however Hadoop works this around
by its shared-nothing run-time.
 Separate JVM are used for different mappers, instead of threads

that may share something lower-level.

Conclusion and Future Work

 Conclusion
 XML pub/sub systems on large cluster is feasible.
 Single machine tests show that no performance gains

can be achieved by paralleled through threads/virtual
machines.

 Hadoop provides better framework on handling parallel
and fault tolerance.

 Future Work
 Tests on real distributed environment.
 More inspection on the map/reduce framework for

stream processing.

References

 2002, ICDE '02: Proceedings of the 18th International
Conference on Data Engineering, YFilter: Efficient and
Scalable Filtering of XML Documents. IEEE Computer
Society, p.341.

 Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M.,
Elmeleegy, K. & Sears, R., 2009, MapReduce Online, UC
Berkley Technique Report.

 YFilter: http://yfilter.cs.umass.edu/
 Cloudera Hadoop Distribution:

http://www.cloudera.com/hadoop

http://yfilter.cs.umass.edu/

Questions

	Benchmark Study on Distributed XML Filtering Using Hadoop Distribution Environment
	Team
	Outline
	Pub/Sub Systems: Motivation
	Pub/Sub Systems: Properties
	Architecture of a Pub-Sub System
	Project Overview and Goals
	Theoretical Core: XML Filtering
	Theoretical Core: Filtering Algorithms
	Theoretical Core: YFilter (Original)
	Slide 11
	Theoretical Core: YFilter (Parallel)
	Project Implementations
	Benchmark 1: Single Thread
	Benchmark 2: Multiple Threads
	Benchmark 3: Map/Reduce
	Slide 17
	Slide 18
	Experimental Evaluation
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Interesting Stuffs
	Conclusion and Future Work
	References
	Questions

