
Combining Fuzzy Information -
Top-k Query Algorithms

Sanjay Kulhari

Outline

 Definitions – Objects, Attributes and Scores
 Querying Fuzzy Data
 Top-k query algorithms

 Naïve Algorithm
 Fagin’s Algorithm (FA)
 Threshold Algorithm (TA)
 No Random Access Algorithm (NRA)

 Comparing top-k query algorithms
 References

Objects, Attributes and Scores

 Each object Xi has m scores (ri1,ri2,…,rim), one for each of m
attributes.

 Objects are listed, for each attribute sorted by score.
 Each object is assigned an overall score by combining the

attribute score using aggregate function or combining rule.
 Aim: Determine k objects with the highest overall score.

0.1

0.8

0.6

0

0.2

R3

0.20.3X4

0.10.1X5

0.70.5X3

0.80.8X2

0.31X1

R2R1

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Querying Fuzzy Data - Example

 Given the following relational structure

0.1

0.8

0.6

0

0.2

R3

0.20.3X4

0.10.1X5

0.70.5X3

0.80.8X2

0.31X1

R2R1

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Query: Select top-2 for the sum aggregate function

Monotonicity property: An aggregation function t is monotone
if t(x1,…,xm) <= t(x’1,…,x’m) whenever xi<=x’i for every i.

Naïve Algorithm

1. Compute overall score for every object by looking into
each sorted list.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Naïve Algorithm

1. Compute overall score for every object by looking into
each sorted list.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3
1.5X1

Naïve Algorithm

1. Compute overall score for every object by looking into
each sorted list.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.6X2

1.5X1

Naïve Algorithm

1. Compute overall score for every object by looking into
each sorted list.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.8X3

1.6X2

1.5X1

Naïve Algorithm

1. Compute overall score for every object by looking into
each sorted list.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.3X4

1.8X3

1.6X2

1.5X1

Naïve Algorithm

1. Compute overall score for every object by looking into
each sorted list.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.3X4

0.3X5

1.8X3

1.6X2

1.5X1

Naïve Algorithm

2. Return k objects with the highest overall score.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.6X2

1.8X3

1.3X4

0.3X5

1.5X1

Return top-2 objects

Fagin’s Algorithm

1. Sequentially access all the sorted lists in parallel until
there are k objects that have been seen in all lists.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Fagin’s Algorithm

1. Sequentially access all the sorted lists in parallel until
there are k objects that have been seen in all lists.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Fagin’s Algorithm

1. Sequentially access all the sorted lists in parallel until
there are k objects that have been seen in all lists.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Fagin’s Algorithm

1. Sequentially access all the sorted lists in parallel until
there are k objects that have been seen in all lists.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Fagin’s Algorithm

1. Sequentially access all the sorted lists in parallel until
there are k objects that have been seen in all lists.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Since k = 2, and X1 and X3 have been seen in all the 3 lists

Fagin’s Algorithm

2. Perform random accesses to obtain the scores of all seen
objects

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Fagin’s Algorithm

3. Compute score for all objects and return the top-k

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.3X4

1.5X1

1.6X2

1.8X3 Return top-2 objects

Threshold Algorithm

1. Access the elements sequentially

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

Threshold Algorithm

1. At each sequential access

(a) Set the threshold t to be the aggregate of the scores seen in this

access.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 2.6

Threshold Algorithm

1. At each sequential access

(b) Do random accesses and compute the scores of the seen
objects.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 2.6

1.3X4

1.6X2

1.5X1

Threshold Algorithm

1. At each sequential access

(c) Maintain a list of top-k objects seen so far

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 2.6

1.5X1

1.6X2

Threshold Algorithm

1. At each sequential access

(d) Stop, when the scores of the top-k are greater or equal to the
threshold.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 2.1

1.6X2

1.8X3

Threshold Algorithm

1. At each sequential access

(d) Stop, when the scores of the top-k are greater or equal to the
threshold.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 1

1.6X2

1.8X3

Threshold Algorithm

2. Return the top-k seen so far

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 1

1.6X2

1.8X3

Return the objects

No Random Access Algorithm

1. Access sequentially all lists in parallel until there are k
objects for which the lower bound is higher than the upper
bound of all other objects.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

.8

.8

1

LB

2.6X4

2.6X2

2.6X1

UB

No Random Access Algorithm

1. Access sequentially all lists in parallel until there are k
objects for which the lower bound is higher than the upper
bound of all other objects.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

2.31X1

0.8

1.3

1.6

LB

2.3X4

2.1X3

2.2X2

UB

No Random Access Algorithm

1. Access sequentially all lists in parallel until there are k
objects for which the lower bound is higher than the upper
bound of all other objects.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.51.5X1

0.8

1.6

1.8

LB

1.6X4

1.8X2

1.8X3

UB

No Random Access Algorithm

2. Return top-k objects for which the lower bound is higher
than the upper bound of all other objects.

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.51.5X1

0.8

1.6

1.8

LB

1.6X4

1.8X2

1.8X3

UB

Return top-2 objects

Comparing top-k query algorithms

 Naïve algorithm
 Buffer space required is equal to the number of database objects.
 Each entry is looked in the m sorted lists. The cost is linear in database size.
 Not efficient for a large database.

 Fagin’s algorithm (FA)
 Large buffer space is required.
 Random access is done at the end to get the missing scores.
 Cost optimal under certain aggregate functions.

 Threshold algorithm (TA)
 Buffer space required is bounded by k.
 Score of an object not seen during algorithm execution is less than the threshold due to

monotonicity property of aggregate function.
 Less object access is required compared to FA because when k common objects have

been seen in FA, their scores are higher or equal to threshold in TA.
 May perform more random access than FA because in FA random access is done at the

end only for the missing scores.
 No Random Access (NRA) algorithm

 Only sorted access is performed.
 May not report the exact object scores, since it uses bounds to determine top k.

References

 Combining Fuzzy Information: An Overview. Ronald
Fagin.

 A Survey of Top-k Query Processing Techniques in
Relational Database Systems. Ilyas, Beskales and
Soliman.

 ‘Web Information Search’ lecture notes. Prof. Leonardi
(http://www.dis.uniroma1.it/~leon/didattica/webir/)

