
Regression Test
Selection for C++

Software

Sanjay Kulhari
PhD Student, Computer Science Department
UC Riverside

Authors:
Gregg Rothermel
Mary Jean Harrold
Jeinay Dedhia

Technical Report 99-60-01, Computer Science Department, Oregon State University, January 1999

Regression test selection

 Given:
 P : A method, class or a program.
 T: Test suite to test P.
 P’: Modified version of P

 Problem definition: Given P, T and P’, choose an
appropriate subset of T that executes the new or
modified code and tests the formerly executed
code that has now been deleted.

Motivation

 Modified code should behave as expected and
should not break the behavior of unmodified code.

 Time spent on test selection should be minimal
and combined time of selection and execution
should not exceed time for testing all the existing
tests for previous version.

 Regression testing can be expensive in object
oriented paradigm due to code reuse, so efficient
test selection can be very beneficial.

Outline

 Background
 Regression testing/ Regression testing in object oriented

software.
 CFG/ICFG/Code Instrumentation

 Regression test selection technique for
 modified application programs
 modified and derived classes

 OOP features handled by the test selection technique.

 Experimental results

 Related work

 Conclusion and Future work

Regression testing

 Regression test selection
 Select a subset of existing test cases.

 Coverage identification
 Create additional tests to cover new

functionality.

 Test suite execution
 Execute tests to establish correctness

 Test suite maintenance
 Create the new test suite and test history.

Regression testing in OO
software

 Testing modified class
 Test driver invokes sequence of methods and

verifies that objects have attained proper states.

 Testing dependent application programs
 Test application programs that use the modified

class.

 Testing derived classes
 Test classes derived from the modified class.

Control Flow Graph

Interprocedural Control Flow
Graph

Code instrumentation

 Branch trace
 Given a program P with ICFG G, execution of

instrumented version of P with test t gives
branches taken during execution.

 Edge trace
 Using branch trace determine the edges in G,

that were traversed when t was executed.
 Edge trace for a test t on P is linear in size with

number of edges in G.

Code instrumentation

 Test History
 Gather edge trace information for each test in T

such that for each test, a set of traversed edges
(n1,n2) is recorded.

 Method TestOnEdge(n1,n2) returns the test
cases that traverse edge (n1,n2)

Test selection technique

 Approach
 Traverse ICFGs of original and modified program

to look for nodes that are not equivalent
(modification traversing)

 Using test history, select all tests that have
reached that point.

 All tests are considered at once and no separate
traversals for each test.

 Nodes are marked ‘visited’ and algorithm
terminates in time proportional to graph size.

Test selection algorithm
(SelectTests)

Test selection algorithm
(SelectTests)

 Input: Program P, modified version P’ and test
suite T for P.

 Output: T’ a subset of T that contains tests that
are modification traversing for P and P’.

 Processing
 Constructs ICFGs for P and P’
 Traverse the graphs recursively using compare

method to get edges through which tests are
modification traversing.

 Use TestOnEdge method to retrieve tests from
the test history.

Test selection algorithm
(SelectTests)

ElevatorApp ElevatorApp’

Compare inserts edge (36,40)

Algorithm traverses other portions of graph and does not go further 40

Tests t3 and t4 are selected

Test selection algorithm
(SelectTests)

 Performance
 Cost(SelectTests) = Cost(ICFG construction for P

and P’) + Cost(Compare) + Cost(set unions)

 = O(n + n’ + nn’ + n|T’|)

Regression test selection for
modified and derived classes

 Class can have multiple entry points therefore
previous technique doesn’t work.

 Naïve approach
 Create driver programs and use SelectTests

algorithm.
 Disadvantage: Unnecessary construction and

traversal of each driver’s ICFG.
 New representation of C++ class

 Class Control Flow Graph (CCFG)

Class Control Flow Graph
(CCFG)

 Collection of individual control flow graphs for the
methods in a class.

 Frame
 Abstraction of a driver program, to simulate

arbitrary sequence of calls to public methods.

 Nodes of individual CFGs are connected with
frame to give CCFG.

CCFGs and SelectTests

 SelectTests can be run on CCFGs of modified or
derived classes to select regression test.

 SelectTests is invoked on the two versions of
CCFGs for the base class when a method is
modified.

 When a derived class redefines base class’s
method SelectTests is invoked on CCFGs of base
and derived class.

 If test suite T is available for derived class and the
base class is modified, SelectTests is run on CCFGs
of the derived classes.

Other issues

 Interclass and Intraclass testing
 Test selection for interclass can be done in

similar way by including the CFGs of other
classes.

 Polymorphism and dynamic binding
 Build ICFGs that include polymorphic call nodes

and edges to other possible CFGs

 Objects as parameters
 Similar to handling polymorphism, build ICFGs

that include polymorphic call nodes and edges
to other possible CFGs

Other issues

 Handling changes in non executable statements
 Mark affected statements that refer to variables

whose declaration is changed.

 Distinguishing driver, setup and Oracle code from
code under test.
 Test the setup methods independently.

 Specification and code based testing
 Black box selection technique should be used in

conjunction to select test relevant to changed
specification.

Experimental results

 Setup
 Experimented with 6 versions of commercial C+

+ library.
 186 classes, 24849 lines of code.
 61 C++ driver programs (test cases)
 Used simulation technique, because C++

analyzer to develop CFG for the code is not
available.

Experimental results

Test selection results

Follow up study

 Categorized modifications as due to
 Constructors
 Operators
 Other

 Collected test selection data for different
modifications
 On two versions constructor and operator

changes accounted for 22 – 35 % so in those
cases it is better to test them separately.

Related work

 Program dependence graph
 Construction of CFGs is costly as compared to

SelectTests.

 ORD (Object relational Diagram)
 Describes static relationship among classes.
 Determines all classes exercised by test cases.
 Less precise than SelectTests.

Future work

 To obtain empirical data on effects of
polymorphism on graph size and algorithm
runtime.

 To empirically investigate the approach to handle
non executable statements.

 To identify if the changes have made existing test
cases inadequate and new test cases are needed.

Questions

