

Today’s Speakers

Raman Grover

 UC Irvine

 Advisor: Prof. Michael Carey

Sanjay Kulhari
 UC Riverside

 Advisor: Prof. Vassilis Tsotras

Acknowledgments
Dryad: Distributed Data-Parallel Programs from

Sequential Building Blocks

Distributed Data-Parallel Computing Using a High-
Level Programming Language

�

DryadLINQ: A System for General-Purpose
Distributed Data-Parallel Computing Using a High-
Level Language

Google Tech Talks

MSDN Channel 9

file:///home/csgrads/skulhari/Desktop/http://goog_1255495351927/

Parallel Distributed
Computing. . . Why ?

Large-scale Internet Services
 Depend on clusters of hundreds or thousands of
 general purpose servers.

Future advances in local computing power :

 Increasing the number of cores on a chip rather than improving
the speed or instruction-level parallelism of a single core

 Hard Problems
High-latency
Unreliable networks
Control of resources by separate federated

or competing entities,
Issues of identity for authentication and

access control.
The Programming Model
Reliability, Efficiency and Scalability of the

applications

Achieving Scalability
Systems that automatically discover and exploit parallelism

in sequential programs

Those that require the developer to explicitly
 expose the data dependencies of a computation.

Condor
Shader languages developed for graphic processing units

Parallel databases

 Google’s MapReduce system

Reasons for Success
Developer is explicitly forced to consider the data

parallelism of the computation

The developer need have no understanding of standard
concurrency mechanisms such as threads and fine-grain
concurrency control

Developers now work at a suitable level of abstraction for
 writing scalable applications since the resources available

at
 execution time are not generally known at the time the

code
 is written.

Limitations
Not a free lunch !

Restrict an application’s communication flow for different
reasons :

 GPU shader languages
 Strongly tied to an efficient hardware implementation
 Map Reduce
 Designed for the widest possible class of developers, aims

for
 simplicity at the expense of generality performance.
 Parallel databases
 designed for relational algebra manipulations (e.g. SQL)

where
 the communication graph is implicit.

Dryad
 Control over the communication graph as well as the subroutines that

live at its vertices.

 Specify an arbitrary directed acyclic graph to describe the application’s
communication patterns,

 Express the data transport mechanisms (files, TCP pipes, and
sharedmemory FIFOs) between the computation vertices.

 MapReduce restricts all computations to take a single input set and
generate a single output set.

 SQL and shader languages allow multiple inputs but generate a single
output from the user’s perspective, though SQL query plans internally
use multiple-output vertices.

 Dryad is notable for allowing graph vertices (and computations in
general) to use an arbitrary number of inputs and outputs.

In this talk !

Dryad : System Overview
Describing a Dryad Graph
Communication Channel
Dryad Job
Job Execution
Fault Tolerance
Runtime Graph Refinement
Experimental Evaluation
Building on Dryad

Before we dive into Details…

Unix Pipes: 1-D
grep | sed | sort | awk | perl

Dryad: 2-D
 grep1000 | sed500 | sort1000 | awk500 | perl50

11

Dryad = Execution Layer

12

Job (Application)

Dryad

Cluster

Pipelin
e

Shell

Machin
e

≈

Virtualized 2-D Pipelines

13

Virtualized 2-D Pipelines

14

Virtualized 2-D Pipelines

15

Virtualized 2-D Pipelines

16

Virtualized 2-D Pipelines

17

• 2D DAG
• multi-machine
• virtualized

Dryad Job Structure

18

gre
p

sed

sort
awk

perl
gre
p

gre
p

sed

sort

sort

awk

Input
files

Vertices
(processes)

Output
files

Channels
Stage

 grep1000 | sed500 | sort1000 | awk500 | perl50

Channels

19

X

M

Items

Finite Streams of items

 Distributed filesystem (persistent)

 SMB/NTFS files (temporary)

 TCP pipes (inter-machine)

 Memory FIFOs (intra-machine)

Architecture

20

Files, TCP, FIFO, Network
job schedule

data plane

control plane

NS PD PDPD

V V V

Job manager cluster

Runtime
Services

Name server
Daemon

Job Manager
Centralized coordinating process
User application to construct graph
Linked with Dryad libraries for scheduling

vertices
Vertex executable

Dryad libraries to communicate with JM
User application sees channels in/out
Arbitrary application code, can use local FS

V V V

Job = Directed Acyclic
Graph

Processing
vertices Channels

(file, pipe,
 shared
 memory)

Inputs

Outputs

 Job execution

Scheduler keeps track of state and history of each
vertex in the graph.

When a job manager fails job is terminated but
scheduler can implement checkpointing or
replication to avoid this.

Execution record attached with a vertex.

Execution record paired with a available computer,
remote daemon is instructed to run the vertex.

V V V

Job execution (cont.)
If an execution of a vertex fails it can start

again.

More than one instance of the vertex may
be executing at the same time.

Each vertex names it output channels
uniquely using version number.

Input ready

New execution record created
and added to scheduling queue

Execution record
paired with an
available computer

Job manager receives
periodic status updates from
the vertex

Vertex

 Fault tolerance policy
All vertex programs are deterministic

Every terminating execution of the job will
give the same results regardless of the
failures over the course of execution.

Job manager will know in any case that
something bad happened to a vertex.

Vertices belong to stages and stage
manager can take care of slow or failed
vertices of a stage.

Fault tolerance policy
(cont.)

If A fails, run it again

If A’s inputs are gone, run upstream
vertices again.

If A is slow, run another copy elsewhere
and use output from whichever finishes
first.

A

 Run-time graph
refinement

To be able to scale to large input sets
while conserving scarce network
bandwidth.

For associative and commutative
computations aggregation tree can be
helpful.

If internal vertices perform data reduction
network traffic between racks will be
reduced.

Keep refining when upstream vertices
have completed.

Stage manager for each input layer.

Run-time graph
refinement (cont.)

Partial aggregation operation, to process k
sets in parallel.

Data mining example follows this.

Dynamic refinement is good because the
amount of data to be written is not known
in advance and also the required input
channels.

Run-time graph
refinement (cont.)

A A A A A *

B

+ + * *

+*

B

+ vertex gets 20,000
tuples, runs
DISTINCT and returns
500 tuples

B vertex receives 50,000 tuples and
Execute DISTINCT on them

* vertex gets 30,000 tuples, runs
DISTINCT and returns 500 tuples

B vertex gets 1000 tuples, runs
DISTINCT

Each A vertex sends 10,000 tuples

Run-time graph
refinement (cont.)

A A A A A *

B

+ + * *

+*

CC C C

B

Experimental
evaluation
Hardware:

 Cluster of 10 computers (Sky server query
experiment)

 Cluster of 1800 computers (Data mining experiment)
 Each computer had 2 dual core Opteron processors

running at 2 GHz. i.e. 4 CPUs total.
 8 GB of DRAM
 400 GB Western Digital.
 1 Gbit/sec Ethernet
 Windows server 2003 Enterprise X64 edition SP1.

Case study I (Sky server
Query)
3-way join to find gravitational lens effect
Table U: (objId, color) 11.8GB
Table N: (objId, neighborId) 41.8GB
Find neighboring stars with similar colors:

Join U+N to find

T = U.color,N.neighborId where U.objId =
N.objId

Join U+T to find

U.objId where U.objId = T.neighborID
 and U.color ≈ T.color

D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

U U

Took SQL plan
Manually coded in Dryad
Manually partitioned data

SkyServer DB
query

u: objid, color

n: objid, neighborobjid

[partition by objid]

select

 u.color,n.neighborobjid

from u join n

where

 u.objid = n.objid

(u.color,n.neighborobjid)

[re-partition by
n.neighborobjid]

[order by n.neighborobjid]

[distinct]

[merge outputs]

select

 u.objid

from u join <temp>

where

 u.objid = <temp>.neighborobjid
and

 |u.color - <temp>.color| < d

Optimization

D

M

S

Y

X

M

S

M

S

M

S

U N

U

D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

U U

Optimization

D

M

S

Y

X

M

S

M

S

M

S

U N

U

D D

MM 4n

SS 4n

YY

H

n

n

X Xn

U UN N

U U

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 2 4 6 8 10

Number of Computers

S
pe

ed
-u

p
Dryad In-Memory

Dryad Two-pass

SQLServer 2005

Case study II - Query
histogram computation
Input: log file (n partitions)
Extract queries from log partitions
Re-partition by hash of query (k buckets)
Compute histogram within each bucket

Naïve histogram
topology

Q Q

R

Q

R k

k

k

n

n

is:Each

R

is:

Each

MS

C

P

C

S

C

S

D

P parse lines

D hash distribute

S sort

C count
occurrences

MS merge sort

Efficient histogram
topology

P parse lines

D hash distribute

S sort

C count
occurrences

MS merge sort

M non-deterministic
merge

Q' is:Each

R

is:

Each

MS

C

M

P

C

S

Q'

RR k

T

 k

 n

T

is:

Each

MS

D

C

Final histogram
refinement

Q' Q'

RR 450

TT 217

450

10,405

99,713

33.4 GB

118 GB

154 GB

10.2 TB

1,800 computers

43,171 vertices

11,072 processes

11.5 minutes

Optimizing Dryad
applications
General-purpose refinement rules
Processes formed from sub graphs

Re-arrange computations, change I/O
type

Application code not modified
System at liberty to make optimization

choices
High-level front ends hide this from user

 All this sounds good !
 But how do I interact with
Dryad ?
Nebula scripting language

Allows users to specify a computation as
a series of stages each taking input from
one or more previous stages or files
system.

Dryad as generalization of UNIX piping
mechanism.

Writing distributed applications using
perl or grep.

Also a front end that uses perl scripts
and sql select, project and join.

 Interacting with Dryad
(Cont.)
Integration with SQL Server

SQL Server Integration Services (SSIS) supports
work-flow based application programming on
single instance of SQL server.

SSIS input graph generated and tested on a
single computer.

SSIS graph is run in distributed fashion using
dryad.

Each Dryad vertex is an instance of SQL server
running an SSIS sub graph of the complete Job.

Deployed in live production system.

LINQ
Microsoft’s Language INtegrated Query

Available in Visual Studio products
A set of operators to manipulate datasets in .NET

Support traditional relational operators
Select, Join, GroupBy, Aggregate, etc.

Integrated into .NET programming languages
Programs can call operators
Operators can invoke arbitrary .NET functions

Data model
Data elements are strongly typed .NET objects
Much more expressive than SQL tables

Highly extensible
Add new custom operators
Add new execution providers

PLINQ

Local machine

.Net
progra

m
(C#,

VB, F#,
etc)

Execution engines

Query

Objects

LINQ-to-
SQL

DryadLIN
Q

LINQ-to-
Obj

LI
N

Q
 p

ro
vi

d
e
r

in
te

rf
a
ce

Scalability

Single-core

Multi-core

Cluster

 DryadLINQ
Automatically distribute a LINQ program
More general than distributed SQL

Inherits flexible C# type system and
libraries

Data-clustering, EM, inference, …
Uniform data-parallel programming model

From SMP to clusters
Few Dryad-specific extensions

Same source program runs on single-
core through multi-core up to cluster

47

DryadLINQ
Client machine

(11)

Distributed
query plan

.NET
program

Query Expr

Data center

Output Tables
Result

s

Input
Tables

Invok
e

Query

Output
DryadTable

Dryad
Execution

.Net Objects

JM

ToTable

foreach

Vertex
code

Word Count in DryadLINQ
Count word frequency in a set of documents:

var docs = DryadLinq.GetTable<Doc>(“file://docs.txt”);
var words = docs.SelectMany(doc => doc.words);
var groups = words.GroupBy(word => word);
var counts = groups.Select(g => new WordCount(g.Key,
g.Count()));

counts.ToDryadTable(“counts.txt”);

49

(1)

SM

GB

S

SM

Q

GB

C

D

MS

GB
Su
m

SelectMany

sort

groupby

count

distribute

mergesort

groupby

Sum

pipelined

pipelined

50

(1)

SM

GB

S

SM

Q

GB

C

D

MS

GB
Su
m

(2)

SM

Q

GB

C

D

MS

GB
Su
m

SM

Q

GB

C

D

MS

GB
Su
m

SM

Q

GB

C

D

MS

GB
Su
m

 Query
plan

 LINQ
query

DryadLINQ: From LINQ to
Dryad

 Dryad

select

where

logs

Automatic
query plan
generation

Distributed
query

execution by
Dryad

 var logentries =
 from line in logs
 where !
line.StartsWith("#")
 select new
LogEntry(line);

 How does it work?
Sequential code “operates” on datasets
But really just builds an expression graph

Lazy evaluation
When a result is retrieved

Entire graph is handed to DryadLINQ
Optimizer builds efficient DAG
Program is executed on cluster

Future Directions
Goal: Use a cluster as if it is a single computer

Dryad/DryadLINQ represent a modest step

On-going research
What can we write with DryadLINQ?

 Where and how to generalize the programming model?
Performance, usability, etc.

 How to debug/profile/analyze DryadLINQ apps?
Job scheduling

 How to schedule/execute N concurrent jobs?
Caching and incremental computation

 How to reuse previously computed results?
Static program checking

 A very compelling case for program analysis?
 Better catch bugs statically than fighting them in the

cloud?

 Conclusions

Goal: Use a compute cluster as if it is a
single computer
Dryad/DryadLINQ represent a significant step

Requires close collaborations across many
fields of computing, including
Distributed systems
Distributed and parallel databases
Programming language design and analysis

	Slide 1
	Today’s Speakers
	Acknowledgments
	Parallel Distributed Computing. . . Why ?
	 Hard Problems
	Achieving Scalability
	Reasons for Success
	Limitations
	Dryad
	In this talk !
	Before we dive into Details…
	Dryad = Execution Layer
	Virtualized 2-D Pipelines
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Dryad Job Structure
	Channels
	Architecture
	Runtime
	Job = Directed Acyclic Graph
	 Job execution
	Job execution (cont.)
	 Fault tolerance policy
	Fault tolerance policy (cont.)
	 Run-time graph refinement
	Run-time graph refinement (cont.)
	Slide 29
	Slide 30
	Experimental evaluation
	Case study I (Sky server Query)
	SkyServer DB query
	Slide 34
	Slide 35
	Slide 36
	Case study II - Query histogram computation
	Naïve histogram topology
	Efficient histogram topology
	Final histogram refinement
	Optimizing Dryad applications
	 All this sounds good ! But how do I interact with Dryad ?
	 Interacting with Dryad (Cont.)
	LINQ
	Slide 45
	 DryadLINQ
	Slide 47
	Word Count in DryadLINQ
	Slide 49
	Slide 50
	DryadLINQ: From LINQ to Dryad
	 How does it work?
	Future Directions
	 Conclusions

