
Early Profile Pruning on XML-
Aware Publish-Subscribe 
Systems

Authors:
Mirella M. Moro
Petko Bakalov
Vassilis J. Tsotras

Presented by:

Sanjay Kulhari



Outline

 Publish-Subscribe Systems
 Bottom-Up Filtering FSM (BUFF)
 Bounding-Based XML Filtering (BoXFilter)
 Experimental Results
 Conclusion



Architecture of a Pub-Sub System

XML 
Queries

XML Docs

XML Filters



Filter Strategies for XML Pub-Sub

 Relational Model
 Join operations on relational models.

 Aggregate XML Queries using indexing
 Sequence matching (FiST)

 Bottom up evaluation of both queries and document.
 More selective elements at leaf nodes.

 Finite state machines (X-Filter, Y-Filter)
 Process common parts of queries at once.
 Typically top-down fashion.



Need for new strategy

 Provision of early pruning to discard queries that are 
bound not to match any documents.

 Early pruning will save processing time on the matching 
process because it reduces the number of queries to be 
considered. 



Bottom-Up Filtering FSM (BUFF)

Groups queries 
according to 

common suffixes

//a/b/c//d (NFA)

//d//c/b/a (BUFF)



BUFF Processing algorithm

SM is triggered 
for closing tag

List of states per element



Example of BUFF matching



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

Document BUFF Runtime stack

Initial stage



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8
a

Document BUFF Runtime stack

Insert a



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8
b

a

Document BUFF Runtime stack

Insert b



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

c

b

a

Document BUFF Runtime stack

Insert c



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

d

c

b

a

Document BUFF Runtime stack

Insert d



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

c

b

a

Document BUFF Runtime stack

Pop d (no transition defined)



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8
b

a

Document BUFF Runtime stack

Pop c (no transition defined)



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8
a

Document BUFF Runtime stack

Pop b (no transition defined)



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8
b

a

Document BUFF Runtime stack

Insert b



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

c

b

a

Document BUFF Runtime stack

Insert c



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

d

c

b

a

Document BUFF Runtime stack

Insert d



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

e

d

c

b

a

Document BUFF Runtime stack

Insert e



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

e

d

c

b

a

Document BUFF Runtime stack

</e> 1
Pop e (State moves to transition 1)



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

d

c

b

a

Document BUFF Runtime stack

</d> 2

1

Pop d (State moves to transition 2)



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

c

b

a

Document BUFF Runtime stack

e

1,2

Insert e



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

c

b

a

Document BUFF Runtime stack

e

1,2

f

Insert f



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

c

b

a

Document BUFF Runtime stack

e

1,2

f

</f> 5
Pop f (State moves to transition 5)



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

c

b

a

Document BUFF Runtime stack

e

1,2

</e> 1

5

Pop e (State moves to transition 1)



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8

c

b

a

Document BUFF Runtime stack

1,2,5

</c> 3,6
Pop c (State moves to transition 3,6)



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8
b

a

Document BUFF Runtime stack

1,2,3,5,6

</b> 4,7
Pop b (State moves to transition 4,7)

Q1 matched



BUFF matching (Runtime Stack)

a1

b2 b5

c3

d4

c6

e9d7

e8 f10

bc

d
e

f

c b

a

Q1

Q2

0

1 2 3

5 6 7

4

8
a

Document BUFF Runtime stack

1,2,3,4,5,6,7

</a> 8
Pop a (State moves to transition 8)

Q2 matched



Bounding Based XML Filtering

 Translates documents and queries to Prüfer sequences.
 Inserts the Prüfer encoding of the profile in a tree-based 

indexing structure.
 Performs subsequence matching.
 Verifies candidate profiles to guarantee query structural 

constraints
 Employs query pruning technique based on lower and 

upper bound estimates.
 Stores original profiles and destination address in a 

routing table.



BoXFilter Core Modules



Plot (Prüfer sequence pos, element)

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

Q1

Q1 = abcabababcd



Plot (Prüfer sequence pos, element)

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

Q1

Q2

Q1 = abcabababcd

Q2 = cdcdecdcdec



Plot (Prüfer sequence pos, element)

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

Q1

Q2

Q3

Q1 = abcabababcd

Q2 = cdcdecdcdec

Q3 = dedededebab



Sequence Envelope

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

Lower Bound

Upper Bound

Lower Bound (L)= abcabababab

Upper Bound (U) = dedeeededed

Li = min(S1i,…, Ski)

Ui = min(S1i,…, Ski)

Min and Max is determined 
based on alphabetical order

Q1 = abcabababcd

Q2 = cdcdecdcdec

Q3 = dedededebab



Properties of a sequence envelope 

 Can be used as an aggregation of set of sequences such 
that the Prüfer encoding of profiles (S1,…,Sk) can be 
combined into a single sequence envelope se and the 
document can be matched against se.

 If there is no subsequence in document for which every 
element in the subsequence is between the lower and 
upper bound of the on the corresponding position in the 
sequence envelope then there is no subsequence 
matching between document any of the profile encodings 
S1,…,Sk.



Properties of a sequence envelope 

 Lemma: If there is no subsequence matching between the 
Prüfer sequence of the document D and a sequence 
envelope SE, then there is no matching between D and 
any of the queries whose sequence are within SE.

 Sequence envelopes can be nested.
 This property allows the creation of the hierarchical index 

structure over the envelopes, where a parent node in the 
index tree has an envelope that contains all the envelopes 
of its children.



Sequence envelope tree



Sequence envelope tree

 Tree search
 Traverse index tree from root to the leaf node.
 Checks the bounding envelope at the current node.

 If there is a subsequence matching, algorithm is executed recursively 
for the corresponding sub-tree

 Advantages
 Dynamic nature

 Insert and delete operations can be intermixed with search operation.
 Scalability

 In case main memory is not sufficient to accommodate all entries of 
tree, nodes can be paged secondary storage and loaded upon 
request 



Filtering algorithm (sequential mode)

1. Profiles are encoded in Prüfer 
sequences and organized in a 
BoXFilter structure.

2. Document is also encoded in 
Prüfer sequence (D).

3. Input to the algorithm is the root of 
the tree and the document (D).

4. BoXFilter tree is traversed and two 
stacks are used, one stack (S) 
stores the pointer to the leaf nodes 
that contain Prüfer encoding of the 
profile and is a subsequence of D. 
Another stack (N) keeps a list of 
internal nodes that have a 
sequence envelope that is 
subsequence of D.

5. Candidate profiles in S are verified.



Finding a match in an envelope tree

D = ABCFABABABABFMatch

Match No match No match

Match No match No match

Stack S

Stack N

Stack N



Filtering algorithm (batch mode)

1. Documents are organized in a BoXFilter 
tree, same way as profiles.

2. Join BoxFilter tree with the document tree in 
top-down manner

3. Checks if sequence envelope of query node 
is a substring of the sequence envelope of the 
document node.

4. Continue until the leaf level in one of the 
tree is reached.

5. Use the leaf node as the key to search in 
the remaining subtree.



Experimental results

Performance results when varying the number of queries



Experimental results



Experimental results



Conclusion

 Queries can be pruned out by evaluating the lower and 
upper bounds of their envelopes.

 Bottom-Up Filtering FSM (BUFF) offers performance 
advantages over the traditional FSM-based approach.

 Pruning offered by BoXFilter provides drastic performance 
improvement.


