
Forensic Analysis of Packet Losses in Wireless
Networks

Abstract—Due to the lossy nature of wireless links, it is difficult
to determine if packet losses are due to wireless-induced effects
or from malicious discarding. Many prior efforts on detecting
malicious packet drops rely on evidence collected via passive
monitoring by neighbor nodes; however, they do not analyze the
cause of packet losses. In this paper, we ask: (a) Given certain
macroscopic parameters of the network (like traffic intensity and
node density) what is the likelihood that evidence exists with
respect to a transmission? and, (b) How can these parameters
be used to perform a forensic analysis of the reason for the
losses? Towards answering the above questions, we first build an
analytical framework that computes the likelihood that evidence
(we call this transmission evidence or TE for short) exists with
respect to transmissions, in terms of a set of network parameters.
We validate our analytical framework via both simulations as
well as real-world experiments on two different wireless testbeds.
The analytical framework is then used as a basis for a protocol
within a forensic analyzer to assess the cause of packet losses and
determine the likelihood of forwarding misbehaviors. Through
simulations, we find that our assessments are close to the ground
truth in all examined cases, with an average deviation of 2.3%
from the ground truth and a worst case deviation of 15.0%.

I. I NTRODUCTION

Wireless ad hoc and mesh networks find application in
municipal networks, tactical deployments and disaster recov-
ery missions. In such networks, packet forwarding along a
path is an inherent functional requirement. There have been
studies on packet dropping attacks, wherein malicious routers
that are required to forward packets do not do so (e.g. [1]).
Unfortunately, due to the lossy nature of wireless links it is
not easy to determine whether packet losses are due to natural
wireless induced effects (channel impairments or interference)
or due to such malicious drops.

Forensic systems typically collect evidentiary data towards
detecting such packet dropping attacks (e.g. [2], [3]); however,
they do not make any analysis to distinguish between wireless
induced losses and malicious drops. Nodes that are part of
the network themselves may act as witnesses and monitor
transmissions [4]; this is an attractive option when networks
are rapidly deployed and dedicated monitoring nodes are
unavailable. Depending on the deployment, witnesses may not
have evidence (e.g., due to very few witnesses or because of
high levels of interference) relating to certain transmissions.

In this paper, our primary objective is to perform a forensic
analysis on the cause of packet losses based on some macro-
scopic network parameters (such as traffic intensity and net-
work density) in multi-hop wireless networks. Specifically, we
seek to answer the questions:(a) Given a set of macroscopic
network parameters, what is the likelihood that evidence exists

relating to transmissions? and,(b) How can one perform a
forensic assessment to determine if packet losses on links are
due to natural effects in a wireless network or due to malicious
discarding, based on these macroscopic network parameters?

Towards answering the above questions, we construct an
analytical framework that takes as input, macroscopic mea-
surements or configurations of network properties (as alluded
to above) and provides as output the probability that evidence
exists relating to transmissions. We call this evidence, “trans-
mission evidence” or TE for short. The analytical framework
forms the basis for a protocol used within a forensic analyzer
to assess the most likely cause of packet losses on links.

In particular, our contributions in this paper are as follows:
(i) Computing the likelihood of TE availability: We

construct an analytical framework for computing the likelihood
of TE availability. We capture the factors that affect TE
availability on both individual links and on an end-to-end path.
We find that the availability depends on network parameters
such as packet size, bit-rates, traffic load and node density.
We make several interesting observations on the trends in TE
availability when tuning these parameters.

(ii) Validating the analytical models via simulations
and real experiments: We perform extensive simulations to
validate our analytical framework. We also perform experi-
ments on (a) a 802.11 testbed and, (b) a testbed with five
WARP boards [5] towards our validation. We find that our
analytical framework can adequately capture the likelihood of
TE availability in real networks.

(iii) Forensic analysis of packet losses:Our analytical
framework facilitates the estimation of the likelihood of either
a transmitter and/or a receiver discarding packets, given the
conditions in the network. The framework is used as the
basis for a protocol within a forensic analyzer. It takes as
input (a) the network parameters and (b) monitoring logs
for the considered link; it then yields the likelihood that the
transmitter or the receiver on the link has discarded packets.
We perform extensive simulations and compare the assessment
results with ground truth. We find that our analyzer facilitates
assessments with high accuracy; in particular, they deviate
from the ground truth by 2.3%, on average.

Scope of our work:Our analytical models yield a quick
and effective way of capturing the TE availability in large
sets of scenarios. The advantage of the approach is that onlya
coarse estimate of network parameters is used in order to make
the assessments. In this paper we have considered relatively
static, homogeneous (e.g. a single packet size is used) settings;
even for this, the construction of the analytical frameworkthat



forms the basis of our forensic analyzer, is non-trivial. More
importantly, the models capture the trends in TE availability in
practice as validated by both our simulations and experiments
on real systems. A consideration of more complex settings is
left to future work.

The output of our forensic analyzer provides coarse-grained
assessments on forwarding misbehaviors. Because of the gen-
erality of the analytical framework applied therein, the assess-
ments of the cause of packet losses on specific links inevitably
deviate from the ground truth. However, our evaluations show
that in all cases we examine, the average deviation from the
truth is about 2.3%, while the maximum deviation is 15.0%.

We wish to point out here that since malicious drops
are always supplementary to wireless induced losses, it is
impossible for an attacker to exactly mimic natural wireless
effects. The likelihood of an attack being detected will directly
depend on the aggressiveness of the attacker; the more the
drops, the more the deviation from what is expected due to
natural wireless effects and thus, the higher the chance of
detection.

Organization:The paper is structured as follows. Section II
discusses related work. In Section III, we provide a description
of our analytical framework. We consider specific network
parameters and apply these in our framework in Section IV.
The applicability of our framework in a forensic analyzer
is discussed in Section V. In Section VI, we present our
performance evaluations. We conclude in Section VII.

II. RELATED WORK

In this section we briefly discuss related literature on
network forensics and analyzing packet losses in wireless
networks.

There is prior work on wireless monitoring at themech-
anism and system designlevel [1], [6], [3], [7], [8], [9],
[10], [11]. Marti et al. design awatchdogscheme to identify
malicious nodes which do not forward packets along a multi-
hop path. McGrathet al. [6] design and implement FLUX;
FLUX automates the collection of forensic data and identifies
abnormal traffic and network weaknesses. Ramachet al. [3]
design and implement DAMON, a distributed monitoring
system for MANETs. In summary, almost all of the above
approaches propose techniques for solving specific network
problems that require evidentiary data. None of them study
the impact of various network parameters on the collection
of evidence as we do here. Moreover, only a few use the
evidentiary data to detect packet dropping attacks [3], [8];
however, unlike in these efforts we try to determine the likely
cause of packet losses using a macroscopic view of network
parameters.

ETX [12] and ETT [13] are metrics that have been designed
to estimate the packet delivery ratio on links; however, they
are empirical and more importantly these metrics reflect the
packet loss rate but do not give insights into the root-causeof
packet losses.

Some prior efforts attempt to distinguish packet losses due
to interference from those due to channel fading [14], [15],

[16]. Reiset al.present models for the physical layer behaviors
of static wireless networks, focusing on the successful packet
reception and carrier sense with interference. Qiuet al. pro-
pose a general model that is able to capture collision-induced
losses in multihop wireless networks, based a limited number
of measurements. Wonget al.propose Robust Rate Adaptation
Algorithm (RRAA), by which they try to differentiate between
fading-related and collision losses. None of these efforts
however, consider the possibility of malicious discardingof
packets.

The work that is closest to ours is in [4]. It proposes a
specific witness-based detection scheme to identify forwarding
misbehaviors. The authors analytically show that their scheme
has low false positive and false negative rates. However, they
do not evaluate how various network parameters would affect
the evidence availability. To our best knowledge, we are the
first to propose analytical models and experimental validation
for this purpose.

III. O UR ANALYTICAL FRAMEWORK

In this section, we develop our analytical framework to com-
pute the likelihood of TE availability. At this time, we assume
that neither the transmitter nor the receiver discards packets
maliciously. We defer a discussion of how our framework can
be applied in a forensic analyzer to identify such possibilities,
to Section V.

Evidence maintenance: In a multi-hop static wireless
network, nodes maintain evidence relating to transmissions
as follows: (a) A sender (or transmitter) keeps the signed
ACK it receives for each packet it sends.(b) A receiver
creates an entry locally for each unique packet received and
digitally verified. (c) A monitoring (witness) node creates an
entry locally for each packet that it overhears and verifies.
We assume that storage is not a limiting factor in evidence
collection; one can envision nodes sending coarse-grained
information relating to collected evidence periodically,to a
central forensic controller. The signed ACK helps in assuring
non-repudiation. The sender can validate that it sent the packet
in question and the receiver cannot deny receiving the packet.
Without loss of generality, we assume that an ACK includes
sender and receiver IDs and thus, an overheard ACK is of
evidentiary value.

We expect that evidence is only sent infrequently to the con-
troller since our objective is to investigate long-term effects. It
can be easily piggybacked onto other control information (e.g.
routing updates) and thus, we expect that the overhead is likely
to be small. Our focus in this paper is more on the forensic
analysis itself and not on the evidence collection process;thus,
we do not perform an analysis of the overhead consumed due
to evidence gathering.

Hop-level TE (HTE): The availability of hop-level TE
reflects the likelihood that evidence exists relating to trans-
missions on a link. Commonly used notations are enlisted in
Table I.

As stated above, for a transmission betweenvi andvj , there
are three sources of evidence.



N Total number of nodes
vi Transmitter
vj Receiver
dvi,vj

Distance betweenvi andvj

Pvi,vj
Received power atvj from vi

hvi,vj
Channel attenuation betweenvj andvi

η Expected value of|hvi,vj
|2

Pt Transmission power
Pn Noise power
α Path loss exponent
z Number of interferers
Z Set of interferers
λ Expected traffic sent per node in unit time
Λ Expected interference level perceived by a node

projected from another node in unit time
r Transmission bit-rate
γ SINR threshold
lD data packet length
lA ACK packet length

TABLE I: Notations

Source 1: vi has the signed ACK fromvj for packet
(src, dest, pkt SQN). This requires that:(a) vi’s data packet
is successfully received byvj and, (b) vj ’s ACK packet is
successfully received byvi.

Pr (succ | r, lD) denotes the probability of a successful
data transmission with rater and packet lengthlD. Simi-
larly, the probability of a successful ACK transmission is
Pr (succ | r0, lA), assuming that an ACK is sent at the base rate
r0 and has a lengthlA. The probability that the first source of
evidence is available is

Prsrc1 = Pr (succ | r, lD) · Pr (succ | r0, lA) . (1)

Source 2: vj has a stored entry|vi|src|dest|pkt SQN |
timestamp|. This source of TE requires a successful transmis-
sion fromvi to vj , the probability of which is

Prsrc2 = Pr (succ | r, lD) . (2)

Source 3: At least one witness has a stored entry|vi|src|
dest|pkt SQN |timestamp|. This requires at least a node other
thanvi or vj to overhear the data transmission fromvi or the
ACK transmission fromvj .

Let Prsrc3 D and Prsrc3 A denote the probabilities that at
least one witness overhears the data and ACK, respectively.
Note that due to the half-duplex property of typical radio
devices, it is assumed that a node cannot be an interferer anda
witness for the same transmission1. Therefore, when there are
totally N nodes in the network andz interferers, the number
of witnesses cannot exceedN − z − 2. Thus we have:

Prsrc3 D =

N−2
X

z=0

Pr (z int | r, lD) ·
“

1 − (1 − Pr (succ | r, lD, z))N−z−2
”

,

(3)

in which
“

1 − (1 − Pr (succ | r, lD , z))N−z−2
”

is the probability
that given z interferers, at least one witness overhears the

1Without loss of generality we assume that the monitoring devices or
witnesses are active nodes in the network. It is easy to modify the analysis if
evidence is collected only by passive monitoring nodes.

data transmission. Considering all possible values thatz can
take, we get the marginal probability that at least one witness
overhears a given transmission.

In a similar way, we computePrsrc3 A as follows2

Prsrc3 A = Pr (succ | r, lD) ·
 

N−2
X

z=0

Pr (z int | r0, lA) ·
“

1 − (1 − Pr (succ | r0, lA, z))N−z−2
””

.

(4)

The successful overhearing of data and ACK transmissions
by any given witness are assumed to be independent. In
reality, there may be correlations due to interference effects
at the overhearing node. However, the assumption (which
we make for tractability) is shown to be reasonable by our
simulations/experiments. With this:

Prsrc3 = Prsrc3 D + (1 − Prsrc3 D) · Prsrc3 A. (5)

Hop-level TE availability: The probability that at least
one source of TE is available for a transmission, under the
assumption of evidence independence3 is

PrHTE = 1 −
3
Y

i=1

Pr(source i is unavailable)

= 1 − (1 − Prsrc1) · (1 − Prsrc2) · (1 − Prsrc3).

(6)

Accounting for retransmissions:Next we consider a limit
of nr retransmissions for the same data packet. The success
of each transmission is independent from that of another
(assuming that these are staggered in time, this is a reasonable
assumption since the temporal network conditions are likely
to change). A successful exchange of data and ACK packets
results in the termination of retransmission attempts. This
probability of successful exchange, denoted byPrsucc ex is

Prsucc ex = Pr (succ | r, lD) · Pr (succ | r0, lA) , (7)

The probability that there arei retransmissions (i + 1 trans-
mission attempts) is denoted asPr(rtx) and is given by:

Pr(rtx = i) =

(

Prsucc ex · (1 − Prsucc ex)i 0 ≤ i ≤ nr − 1

1 −
Pnr−1

j=0 Pr(rtx = j) i = nr

.

Hence, the TE availability probability with a retransmission
limit of nr is:

PrHTE [nr ] =

nr
X

i=0

Pr(rtx = i) ·
`

1 − (1 − PrHTE)i+1
´

. (8)

Path-level TE (PTE): Next we look at the path-level TE,
i.e., the evidence relating to all transmissions on an end-to-
end path. The TE availability on each hop along the path is
assumed to be independent of that on the other hops. Again,
in reality the TE availability across hops may be correlated
but we make this assumption for tractability; our simulations
and experiments (where there is correlation) verify that this
assumption is indeed acceptable. The PTE requires the HTE

2For vj to transmit an ACK, it must have successfully received the
corresponding data packet.

3Dependencies between sources of evidence are discussed in Section V.



on all the hops of the path. The PTE for aH-hop path, denoted
by PrPTE [H ], is given by:

PrPTE [H ] =

H
Y

h=1

PrHTE [ at hth hop ]. (9)

Bit-rate selection: Different bit-rates used on different
hops will cause the TE availability on each hop to differ.
The bit rate used on a link depends not only on the physical
conditions (e.g., the distance between the communicating pair,
the temporal fluctuations due to fading) but also on the rate
adaptation algorithm in use. Given these, it is difficult to come
up with a distribution for the bit rates used by nodes in a
network. For simplicity, we assume that a bit rate is selected
randomly from among the set of available rates. Note however,
that our analysis can easily incorporate other distributions
characterizing the usage of different bit rates. The probability
of PTE availability is computed by considering all possible
combinations of rates, on each hop of the path.

With (9), we see that the same parameters that affect
HTE affect PTE. In addition, the hop countH impacts PTE;
generally, as one may expect the longer the path, the lower
PTE.

Note that the PTE as defined here is strict in the sense that
it requires HTE on all hops. The TE of the transmission on
hoph, can imply the success of transmissions on the previous
h− 1 hops, even though the HTE may not be available for all
such hops. We will consider this sort of implicit PTE in future
work.

IV. EXPLICITLY COMPUTING THE L IKELIHOOD OF TE
AVAILABILITY

Now that we have computed the high level formulation
of the likelihood of TE availability in Section III, we need
compute the probabilities of success in (1), (2) and (5).
However, in order to do so, we need to provide specific
characteristics of the network. We proceed to do so in this
section using commonly used models for representing the
channel, the node density and the generated traffic; the models
seem to characterize practical settings with good accuracy
as seen in our real experiments later. Note here that, other
models can be easily incorporated into our generic analytical
framework.

The channel model:The received signal strength from node
vi, at nodevj is:

Pvi,vj
=

Pt · |hvi,vj
|2

dα
vi,vj

, (10)

where,Pt is the transmission power.hvi,vj
is the attenuation

due to fading between the communicating pair. As typical, we
assume thathvi,vj

is a Rayleigh distributed random variable
[17]; thus, |hvi,vj

|2 is exponentially distributed.dvi,vj
is the

distance betweenvi andvj. α is the path loss exponent.
The collision model:There are several models used to cap-

ture collisions in the literature [18]. We use theSINR (Signal-

to-Interference-and-Noise) physical model, where nodevj suc-
cessfully receives the transmission from nodevi iff :

Pvi,vj

Pn +
X

k∈{1,...,N}\{i,j}

Pvk,vj

> γ, (11)

where, Pvi,vj
is the received power fromvi to vj and is

computed using (10).Pn is noise power.vk is one of the
interfering nodes.

P

k∈{1,...,N}\{i,j} Pvk,vj
is the accumulative

interference power perceived byvj. γ is the SINR threshold
which varies with transmission bit-rate.

Use of multiple bit rates:The data packets are sent at a
chosen transmission bit-rate from a set of available rates.For
each rate there is a corresponding SINR threshold.

Media access control (MAC):To remove protocol depen-
dencies, we do not assume a specific MAC scheme. Instead,
we use a parameter to characterize the interference that nodes
perceive, which in turn reflects the interference resolvingabil-
ity of the MAC in use. This simplified representation avoids
modeling the operations of specific MACs. As demonstrated
later in Section VI, this model can be used to characterize
multiple commonly used MAC protocols.

Node distribution: The network consists ofN uniformly
distributed static nodes (vi, i ∈ {1, ...,N}).

Traffic pattern: Nodes send Poisson traffic, including their
own packets and those to be simply forwarded.

Computing TE availability: Towards computing (6), we
start by considering a transmission of a data packet fromvi to
vj . Given the distance between themdvi,vj

, the transmission
bit-rate in user, packet lengthlD, and the number of interferers
z, the probability of the transmission succeeding (denoted as
Pr
`

succ | r, lD, dvi,vj
, z
´

) is:

Pr
`

succ | r, lD, dvi,vj
, z
´

= Pr

0

B

B

@

Pvi,vj

Pn +
X

k∈Z

Pvk,vj

> γ

1

C

C

A

, (12)

whereZ is the set of interferers.Z ⊂ {1, ..., N}\{i, j} and |Z| =

z. The value ofγ here, corresponds to the rater in use.
With respect to the right hand side (RHS) of (12) there are

two cases: (i) in the absence of interference (whenz = 0) and,
(ii) with the presence of interference (when1 ≤ z ≤ N − 2).
Detailed derivations of (12) for these two cases, are presented
in an appendix.

Next, we remove the conditioning on the number of inter-
ferers z from Pr

`

succ | r, lD, dvi,vj
, z
´

. Λ is a parameter that
captures the expected interference at a given node from a
neighbor node, per unit time. In reality this is dependent
on both the traffic intensity and the MAC protocol in use.
However, we try to capture the interference experienced at a
node, simply with this parameter. If interference is managed
(e.g. with TDMA or CSMA/CA),Λ is likely to be low. If the
interference is unmanaged (as with say Aloha) and is high,
Λ will be high. If we assume asynchronous transmissions
and fixed sized packets, it is easy to see that a packet is
interfered with, if another node initiates a transmission within
the packet transmission time (sayτ), or for a duration ofτ prior



to the beginning of the intended transmission (similar to the
analysis of the Aloha medium access scheme in [19]). Thus,
if the traffic load of a node isλ, the projected interference
load can be characterized by2λ. Hence in this specific case,
Λ = 2λ. When the traffic load is Poisson, the probability that a
transmission does notoverlapwith the intended transmission
betweenvi andvj is:

g(0, Λ
lD

r
) = e−Λ

lD
r

„

Λ
lD

r

«

. (13)

The probability that there arez (0 ≤ z ≤ N − 2) interference
sources during the data packet transmission timelD

r
is:

Pr (z int | r, lD) =

„

1 − g(0, Λ
lD

r
)

«z

· {g(0, Λ
lD

r
)}(N−2−z).

(14)

The probability of a successful data transmission given the
bit-rate and the packet length in use, and the distance between
the communicating pair, is:

Pr
`

succ | r, lD , dvi,vj

´

=

N−2
X

z=0

Pr (z int | r, lD) · Pr
`

succ | r, lD, dvi,vj
, z
´

.
(15)

Next we remove the conditioning ondvi,vj
from Pr (succ | r,

lD , dvi,vj

´

. As discussed, if one were to assume a uniform node
deployment distribution, the PDF ofdvi,vj

is 2d
R2

. Thus:

Pr (succ | r, lD) =

Z R

0
Pr
`

succ | r, lD , dvi,vj

´ 2d

R2
dd. (16)

We emphasize that (14) and (16) can be easily modified to
incorporate other distributions of interference levels and node
deployments.

Pr (succ | r, lD , z) in (3), is obtained by removing the condi-
tioning ondvi,vj

from Pr (succ | r, lD , dvi,vj
, z
´

(similar to that
in (16)). Together withPr (z int | r, lD) and Pr (succ | r, lD),
we getPrsrc1, Prsrc2 and Prsrc3, and finally the probability
that hop-level TE is available (PrHTE) in (6).

V. OUR FORENSICANALYZER

Our analytical framework is used as the basis for a pro-
tocol within a forensic analyzer. Using the framework the
analyzer computes offline, the probabilities of packet losses
and TE availability under different conditions, in a benign
setting on a link, based on a set of network parameters. It
then compares these computed values with what is observed
during network operations to estimate the likelihood of a
transmitter or receiver discarding packets and lying aboutthe
same. As discussed earlier, the packet losses due to malicious
dropping will always be in addition to what is experienced in
benign settings due to wireless effects. The more aggressive
an attacker, the more will be the deviation between what is
observed and the expected number of packet losses in benign
settings.

In this section, we describe our forensic analyzer in detail.
Performing the forensic analysis:As illustrated in Fig. 1,

the forensic analyzer takes as inputs 1) the estimated prob-
abilities from our analytical framework and 2) the evidence

collected by nodes at runtime and the packet delivery ratios
(PDRs) reported by the receivers. It outputs the assessmentre-
sults on possible forwarding misbehaviors as discussed below.

Fig. 1: Forensic analyzer

Forwarding misbehaviors:Nodes on an end-to-end path in
a multi-hop wireless network may indulge in forwarding mis-
behaviors. Alying transmitter may claim to have attempted
to forward packets, but may not have done so. Evidence for
the transmissions that did not occur will not exist. Alying
receivermay claim to have not received packets that were in
fact received. If a receiver denies receiving packets, the only
source of TE comes from any witness overhearing the data
transmissions (available with probabilityPrsrc3 D).

Threat model: In this work, we only consider forwarding
misbehaviors as above. We assume that the network pa-
rameters are accurately gathered and nodes do not lie with
regards to these parameters. We assume that keys cannot be
compromised to create fake signatures. We also assume that
there is no evidence manipulation i.e., none of the nodes
create fake evidence or delete the genuine evidence. While a
receiver discards packets as above, we assume it still follows
the protocol in sending ACKs (only) for packets that it does not
discard. Given these assumptions, the first source of evidence
is conditional on the second source i.e., an ACK is possible
only if the receiver says that it received the data packet
successfully. Overheard ACKs, as part of the third source of
evidence, are also dependent on the event that the receiver
successfully receives the data packets. In other words, thefirst
source of evidence and evidence with overheard ACKs will be
availableiff the second source of evidence is available (receiver
has successfully recorded the data packet). With this, it iseasy
to see that (6) can be refined to{1−(1−Prsrc2)·(1−Prsrc3 D)}.

Analysis of misbehaviors: Suppose thatPr[transmitter

lying] is the likelihood of a transmitter lying about sending
packets (which it does not send). LetPr [receiver lying] be the
likelihood of a receiver lying of not receiving packets (when
it discarded such received packets). With these forwarding
misbehaviors, the likelihood of TE availability is:

P̃ rHTE = 0 · Pr[transmitter lying]+

1 · (1 − Pr[transmitter lying]) · Prsucc · (1 − Pr[receiver lying])+

Prsrc3 D · (1 − Pr[transmitter lying]) · Prsucc · Pr[receiver lying]+

Prsrc3 D · (1 − Pr[transmitter lying]) · (1 − Prsucc),

(17)

where,Prsucc is simply a shortened notation forPr (succ | r,

lD). The terms in the summation on the RHS of (17) corre-
spond to the TE availability over all possible combinationsof
the transmitter and the receiver lying as detailed in Table II.
As discussed, if the transmitter is lying, no TE is available. If
the receiver is lying, witnesses may or may not have evidence
to the transmission.



Case TE availability
probability

Transmitter lying 0
Transmitter not lying, receiver receiving the packet and not lying 1
Transmitter not lying, receiver receiving the packet and lying Prsrc3 D

Transmitter not lying, receiver not receiving the packet Prsrc3 D

TABLE II: TE availability under all possible cases

If Pr[transmitter lying] and Pr[receiver lying] are set to 0,
(17) reduces to{1−(1−Prsrc2)·(1−Prsrc3 D)}, which is exactly
the TE availability in benign settings.

If a transmitter or/and receiver indulges in forwarding
misbehaviors, the PDR reported by the receiver is affected.
Only those packets that are sent by the transmitter, successfully
received and truthfully reported by the receiver are counted
towards successful delivery. This PDR is expressed as:

PDR =

(1 − Pr[transmitter lying]) · Prsucc · (1 − Pr[receiver lying]).

(18)

Solving (17) and (18) yieldsPr[transmitter lying] and Pr

[receiver lying] as follows:

Pr[transmitter lying] =

1 − P̃ rHTE − PDR + PDR ∗ Prsrc3 D

Prsrc3 D

.
(19)

Pr[receiver lying] =

1 − PDR · Prsrc3 D

Prsucc · (P̃ rHTE − PDR + PDR · Prsrc3 D)
.

(20)

From (19) and (20), we see that there are four values es-
sential towards computing the desired probabilities. First, one
would need the measured actual TE availability and reported
PDR from the network during operations. The probability
P̃ rHTE is simply the ratio of the number of packets for
which evidence is available to the total number of packets
the transmitter claims to have sent.Prsrc3 D and Prsucc

are obtained from the analytical models. Using these, the
desired probabilities for the setting are computed. Finally,
the probability of packet losses due to either the transmitter
lying or the receiver lying is{Pr[transmitter lying] + (1 −
Pr[transmitter lying]) · Pr[receiver lying]}; The complementary
probability to this yields the likelihood of the losses being
because of natural effects (channel induced or interference) in
the wireless network.

Discussion: We wish to acknowledge here that the actual
TE availability on specific hops, even without any forwarding
misbehaviors, may vary from that predicted by our analytical
framework. Our assessment may inevitably deviate from the
ground truth. However, the approach provides a quick and
coarse-grained estimation on the likelihood of forwarding
misbehaviors. In Section VI, we find via simulations that our
assessments do not deviate much from the ground truth. For
further fidelity, the local traffic and topology in the proximity
of a link of interest can be considered and the analysis mod-
ified for that setting; however, note that this would increase

the volume of information collected towards performing the
forensic analysis (since microscopic information from local
neighborhoods are needed).

VI. EVALUATIONS

In this section, we first validate our analytical framework
(in benign settings) with both simulations, and experiments
on two different testbeds. We also examine the trends in TE
availability by varying different network parameters. These
provide an understanding of the likelihood of the existence
of TE in various settings. Finally, we conduct a forensic
analysis of packet losses to assess the likelihood of forwarding
misbehaviors via simulations.

The default parameter settings (unless specified otherwise)
are listed in Table III. Without loss of generality, the values
for the rates and SINR thresholds are adopted from 802.11a.

N 10
Pt 3.16E-2watts

Pn 3.16E-10watts

λ 20 pkt/sec
R 100 m

η 1.0
α 2.0
Data packet length 50/100/200/400/800/1500 bytes
ACK length 20 bytes
Rates and SINR See Table IV for the SINR
thresholds thresholds and rates.

TABLE III: Default parameter settings

Rate 6 9 12 18 24 36 48 54
SINR 6.02 7.78 9.03 10.79 17.04 18.8 24.05 24.5

TABLE IV: 802.11a Rates (Mbps) and SINR thresholds (dB).
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(b) Simulation
Fig. 2: Hop-level TE availability probability

A. Model Validation via Simulations

Simulation setup: The simulations are performed using
OPNET modeler version 14.5 [20]. In our simulations, we
first consider a single hop wireless network. Here,N nodes
are uniformly distributed in a circle with diameter2R. The
considered receiver is positioned at the center, while the trans-
mitter is randomly picked from among the otherN − 1 nodes.
The transmissions experience both path loss and Rayleigh
fading. Next, we consider a multi-hop network by spreading
5N nodes uniformly in a circle with diameter2

√
5R. The paths

whose PTE is considered, are selected such that the nodes
on the paths are near the center of the circle, instead of
being at the network edge. We choose these configurations
to eliminate edge effects while keeping the node density of
the network fixed. Traffic are sent between randomly chosen



6 9 12 18 24 36 48 54
0

0.2

0.4

0.6

0.8

1

Rates (Mbps)

P
ro

b
a

b
ili

ty
 o

f 
H

T
E

 a
v
a

ila
b

ili
ty

 

 

pkt len 200 bytes
pkt len 400 bytes
pkt len 800 bytes
pkt len 1500 bytes

(a) Node number 20

6 9 12 18 24 36 48 54
0

0.2

0.4

0.6

0.8

1

Rates (Mbps)

P
ro

b
a

b
ili

ty
 o

f 
H

T
E

 a
v
a

ila
b

ili
ty

 

 

pkt len 200 bytes
pkt len 400 bytes
pkt len 800 bytes
pkt len 1500 bytes

(b) Node number 30
Fig. 3: Impact of node density
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(b) High Traffic Volume
Fig. 4: Impact of traffic volume
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Fig. 5: Impact of retransmission
limit (pkt len 1500 bytes)

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hop count

P
ro

b
a

b
ili

ty
 o

f 
P

T
E

 a
v
a

ila
b

ili
ty

 

 

pkt len 200 bytes
pkt len 400 bytes
pkt len 800 bytes
pkt len 1500 bytes

Fig. 6: PTE availability proba-
bility (analytical)
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Fig. 7: PTE availability proba-
bility (simulation)
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Fig. 8: CDF of PTE availability

source destination pairs. The traffic generated at a node is 20
pkts/sec. Shortest path routes are used. Nodes transmit packets
at random instances in time to contend for channel access. At
the end of a run, we combine the traces from all nodes and
calculate the number of unique transmissions recorded. The
fraction of this number over the total number of transmissions
occurring during this run, is the TE availability probability.
The data collected for each specific scenario is an average
over 20 runs.

Trends in hop-level TE availability: We first examine the
trends in HTE availability when various parameters are tuned.
Benign settings are considered.

Bit-rate and packet length:We first vary the transmission
bit-rate and packet length. The other parameters are at default
settings. Fig. 2 shows the trend in HTE availability from
the analysis and simulations4. We see that for a fixed bit-
rate, a smaller packet length leads to higher hop-level TE
availability. This is because, with a smaller packet length,
the air time is small; thus, the chances of a packet being
corrupted due to interference either at the receiver or at the
witnesses is lower. Furthermore, using lower bit rates results in
almost perfect TE availability when the packet length is small.
When the rate increases the TE availability decreases. With
higher rates, packets are more susceptible to channel induced
losses. This decreases the probabilities that the receiverand the
overhearing witnesses successfully receive the transmissions.
The above effects are more pronounced with larger packet
lengths. In the case we consider, when the packet length grows
beyond 800 bytes, even the lower rates do not guarantee high
TE availability.

The results from simulations are shown in Fig. 2(b). We
observe that the trends hold in terms of TE availability , thus
validating the applicability of our assumptions.

4The simulation results for packet lengths of 50 and 100 bytesare similar
to that of length 200 bytes; they are not shown for clarity.

Node density:We increase the number of nodes deployed
from 10 to 20 and 30. As a consequence the node density
increases. The analytical results are in Fig. 3 (simulation
results are similar and not shown for purposes of clarity).
The total interference levels imposed on a node is higher due
to the higher node density. This hurts both packet reception
and overhearing and eventually hurts TE. However, a high
node density means that there are more nodes serving as
potential witnesses. This helps TE collection. Figs. 3(a) and
3(b) indicate that (a) when low rates are used, thefirst factor
seems dominant and, thus TE availability tends to decrease as
N increases; (b) when high rates are used, thesecondfactor
seems dominant and TE availability increases withN .

Traffic volume: Now we adjust the traffic generated per
node to be 5 times less (4 pkts/sec) and 5 times more (100
pkts/sec). As we see from Fig. 4(a), TE availability is fairly
high and alike across all packet lengths with low traffic
volume. It is because the main reason for packet failure is
the effect of the channel and not the interference. In addition,
with less traffic to send, nodes are more likely to be witnesses
and collect TE. When traffic volume is high (Fig. 4(b)),
TE availability drops drastically; high interference hurts TE
collection and nodes have less time for overhearing.

Retransmission limit:We vary the retransmission limit from
0 (default) to 7. We notice that at low and moderate loads
allowing more retransmissions increases TE availability as one
might expect (Fig. 5). The TE availability drops when the
retransmission load increases beyond a certain point. Notehere
that node density is a factor in determining when such a switch
over would occur. Due to space constraints, we do not discuss
more details here.

Trends in path-Level TE availability: We vary the packet
length and hop count; other parameters remain at default
settings. We look at paths with hop counts from 1 to 7. Recall
that we assume a uniform rate selection at each hop. The
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Fig. 9: Empirical HTE in 802.11.
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Fig. 10: Empirical HTE in Aloha.
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Fig. 11: Empirical PTE in 802.11.

results in terms of PTE availability probability generatedwith
our analytical models and from simulations, are in Figs. 6 and
7 respectively. We observe that: (1) A shorter packet length
yields a higher PTE availability. This trend is consistent with
that in HTE. (2) The PTE decreases quite fast with increasing
hop count. With the hop count being increased by 1, the PTE
drops by 10%-20%. (3) The simulation results are similar to
the analytical results.

Fig. 8 presents the CDFs of the PTE for all the cases that
we examine. We observe in about 80% of the cases, the PTE is
above 0.5; in about 30% of the cases, it exceeds or approaches
0.8. This implies that, there is a good likelihood that the PTE
is available in typical settings.

B. Model Validation via Experiments

We examine the TE availability in real networks: (a) in a
802.11 testbed with CSMA/CA and (b) in a testbed of WARP
nodes with Aloha. Our objective is to show that our framework
accurately characterizes the TE availability that one can expect
in real networks.

Experiment setup: We conduct two sets of experiments, to
examine the TE availability ininterference-managed(802.11
CSMA/CA) and-unmanaged(Aloha) scenarios, respectively.

The first set of experiments is performed on a 42-node wire-
less testbed deployed on an entire floor of a campus building.
The nodes are based on the Soekris net5501 hardware config-
uration, and run a Debian Linux distribution. We experiment
with the 802.11a mode in order to avoid interference from
co-located 802.11b campus WLANs. RTS/CTS is disabled.
Each scenario involves different sets of about ten nodes. In
each scenario, every node generates traffic to a randomly
chosen neighbor, while running TCPdump to record all packets
it receives or overhears. The TE availability probability is
computed as described earlier with our simulations.

The second set experiments is on a 5-node WARP (Wireless
open-Access Research Platform) [5] Radio testbed in a lab
setting. Nodes access the channel using Aloha, which runs on
top of the WARP OFDM implementation. Traffic is generated
on the board itself. When a node is idle (not transmitting)
it logs the data and ACK transmissions going on in its
neighborhood and these logs are continuously sent to the
central server which is connected to all the nodes using an
Ethernet interface provided on each node. The central server
is a PC which is basically used to send control messages to
the nodes and to collect logs sent by the nodes. We evaluate
the trends in TE using this testbed by varying packet lengths

and modulation schemes. There is no option to change the
forward error correction or FEC, code rate on our boards. The
packet generation rate is 200 pkts/sec. We use 3 transmitters
and 2 receivers for a period of 10 seconds.

Empirical hop-level TE: First, we report our experiments
on the 802.11a testbed. We plot the TE availability probability
for various packet lengths and with different rates in Fig. 9.
We see that low rates offers high TE availability. At higher
rates, the TE availability drops slightly (≈ 10%), especially
for larger packet sizes. A quick look at Fig. 4(a) shows that
the results with our model with low traffic volume is similar
to what is seen here. This is because, CSMA/CA manages the
interference well to avoid interference in the vicinity of an
active transmission. There is still interference due to hidden
terminals, but the levels are low. Thus, by calibrating our
model with a lowΛ one can obtain trends that are likely to
exist with MAC protocols that manage interference (as with
802.11 or TDMA).

Next, we consider unmanaged interference with Aloha. We
use our WARP testbed here. Since, our testbed consists of only
five nodes, we use a high packet generation rate in order to
have a desired interference level.

Fig. 10 shows the TE trends with the four modulation
schemes with Aloha. With our WARP boards, the FEC code
rate is fixed and hence, there are not as many bit-rates to select
from. The fairly limited setting of the testbed makes it difficult
to directly compare the results with the heavy load scenario
in Fig. 4(b), although the trends are similar. At low rates the
TE availability is low. As we increase the rate it increases and
finally drops due to channel induced effects with QAM 64
modulation. Note that there is no one to one mapping between
the x-axes in Figs. 10 and 4(b). Thus, it is difficult to get an
exact match. However, the model does indeed predict the trend
of what could be expected in practice.

Empirical path-level TE: We use our 802.11 wireless
testbed to validate the model for PTE. We create a number
of 3 and 4-hop paths to measure the probability of end-to-
end TE availability. Note that due to the small scale, such an
experiment was not possible with our WARP hardware. We
used static routing to create multi-hop paths to ensure that
route flapping did not happen. Default rate adaptation is used
by nodes. Each node along the path logs the traffic which is
being transmitted in its vicinity, using which we calculatethe
PTE for each multi-hop path. Two packet sizes are considered.
It is seen in Fig. 11 that the PTE availability decreases as the
hop count and packet length increase. We see a good match



with our analytical results generated with a low traffic volume.
Summary: To summarize, both our simulation and exper-

imental results demonstrate that by appropriately calibrating
our analytical framework with network parameters (packet
size, bit rate in use, node density, interference level), one can
get a good indication of the likelihood of TE availability in
practice. This can not only aid forensic analysis (as discussed
next), but also allow a network administrator to determine
the efficacy of a monitoring system given specific network
conditions.

C. Forensic Analysis Using TE

In our last set of evaluations, we aim to provide the
assessments of forwarding misbehaviors. We randomly select
up to one hundred links from our simulated network and on
each of these links, ten thousand packets are scheduled to be
sent. We emulate forwarding misbehaviors at the transmitters
and receivers, individually and jointly. A transmitter lying by
x%, implies that it does not transmitx% of the packets that
it is supposed to send. A receiver lying byx% means that it
claims to have received only1 − x% of the packets that it in
fact receives. We vary the fraction of lying (10%, 20%, 40%
and 60%) at the transmitter and receiver, respectively. These
preset values correspond to the ground truth.

We collect the actual TE and PDR for each transmission
period. Having the measured values from the simulations and
their estimated counterparts from the analytical models, we
use our forensic analyzer described in Section V to assess the
likelihoods of the transmitter and/or the receiver lying.

The assessment results are presented in Table V. Column
one contains the ground truth, while columns two to four
contain the average/minimum/maximum deviation of the as-
sessments from the truth (expressed as percentages) across
all considered links. The deviation is calculated as|assessed

value − truth| and is computed for both the transmitter and
receiver. We see that, overall, our assessments are able to
reflect the ground truth with good accuracy. However, due
to the variance between the generic analytical models and
the unique circumstances of each link, inevitably there is a
deviation in the assessment on each specific link. The average
deviation is 2.3% for all the cases that we examine, while
the maximum value is 15.0%. These results demonstrate that
our analytical framework can facilitate the assessment of the
considered misbehaviors with good accuracy.

Note here that the deviation, as we define here, computes
the “overestimate” or the “underestimate” of the misbehavior
probability by the forensic analyzer in absolute terms. If this
deviation is small, the analyzer has a reasonable estimate of the
likelihood of misbehavior. If needed, it can further gatherfine
grained information from the vicinity of the link in question
to refine this probability estimate.

VII. C ONCLUSIONS

In this paper, we seek to differentiate between wireless
induced packet losses and malicious discarding in wireless
networks. Towards facilitating such a forensic analysis, we

Ground Assessment Results
Truth (%) avg dev (%) min dev (%) max dev (%)
transmitter 10 2.05 0.00 1.05
receiver 0 4.20 0.00 11.77
transmitter 0 5.28 0.02 10.39
receiver 10 2.71 0.00 9.62
transmitter 10 1.80 0.18 6.08
receiver 10 1.84 0.38 5.88
transmitter 20 5.36 0.32 15.00
receiver 0 2.92 0.00 11.21
transmitter 0 1.36 0.00 8.49
receiver 20 2.32 0.35 9.24
transmitter 20 1.56 0.38 5.11
receiver 20 1.66 0.55 5.09
transmitter 40 3.87 0.29 10.89
receiver 0 2.59 0.00 9.09
transmitter 0 0.76 0.00 4.90
receiver 40 1.38 0.09 7.53
transmitter 40 0.99 0.26 3.11
receiver 40 1.01 0.16 3.05
transmitter 60 2.34 0.24 5.52
receiver 0 1.84 0.00 8.85
transmitter 0 0.23 0.00 1.42
receiver 60 1.89 0.50 5.20
transmitter 60 0.39 0.12 1.28
receiver 60 0.43 0.09 1.34

TABLE V: Assessments on transmitter and receiver lying

develop an analytical framework that takes as input various
macroscopic network parameters and yields as output, the
likelihood of evidence availability. We validate our analytical
framework via both extensive simulations and experiments on
two different wireless testbeds that employ different MAC
protocols. We then discuss the applicability of our analytical
framework in a forensic analyzer to determine the likelihood
of a transmitter or receiver discarding packets maliciously. We
show via simulations that the analyzer is able to determine
these likelihoods with high accuracy.
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APPENDIX

The notation used here is carried over from Table I.
There are two cases when considering (12). In the absence

of interference,

Pr
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succ | r, lD, dvi,vj
, z = 0
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„
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We denote
dα

vi,vj
·Pn·γ

Pt
by c. Recall that |hvi,vj

|2 is an
exponentially distributed r.v. with parameterη. Thus,
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With interference, the success probability is computed as:
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It is difficult to compute the above since the distances from
vj , to different interferers will be different. For tractability,
we make a conservative approximation that all the interferers
are at the same distance as that to the closest interferer tovj

5

(denoted asmin{dvk,vj
}). With this, we find a lower bound on

the success probability (upper bound on failure probability) as
follows:
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On the RHS of (23), there are three r.v.smin{dvk ,vj
}α,

P

k∈Z |hvk,vj
|2 and |hvk,vj

|2. Since |hvk,vj
|2 is exponentially

distributed with parameterη, the sum
P

k∈Z |hvk,vj
|2 follows

5Our simulations validate that this is reasonable.

an Erlang distribution with parametersη and z [21]. Next we
derive the distribution ofmin{dvk,vj

}α (dα
min for short):

Fdmin
(d) = Pr(dmin ≤ d) = 1 − Pr(dmin > d). (24)

Recall thatdmin is the minimum of the distances from the
z interferers tovj (denoted byd1, d2, · · · , dz). Thus,

1 − Pr(dmin > d) = 1 − Pr(min{d1, d2, ..., dz} > d)

= 1 − Pr(d1 > d, d2 > d, ..., dz > d).
(25)

Sinced1, d2, · · · dz are independent r.v.s with the same dis-
tribution, (25) can be written as:

1 − Pr(d1 > d) · Pr(d2 > d) · · ·Pr(dz > d) = 1 − Pr(d̂ > d)z

= 1 −
“

1 − Pr(d̂ ≤ d)
”z
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`

1 − F
d̂
(d)
´z

(26)

whered̂ is the distance from an interferer tovj . The probability
distribution of d̂ is simply the distribution of distance between
node pairs in the network (since the interferer could be
anywhere within the range ofvj). If one assumes a uniform
deployment of nodes, the probability density function (PDF)
that a node isd units away from another node is2d

R2
whereR

is the maximum possible distance units between a pair.
The PDF ofdmin, fdmin

(d) is then given by:
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The PDF of dα
min (denoted asd̃), a function of dmin, is

expressed as [21]:

f
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We now have the PDFs for the three r.v.smin{dvk,vj
}α,

P

k∈Z |hvk,vj
|2 and |hvi,vj

|2. To compute (23), we need to
further get the PDFs for{Pt · |hvi,vj

|2 ·min{dvk,vj
}α} (denoted

as a new r.v.V ) and{γ ·Pt ·
X

k∈Z

|hvk,vj
|2 ·dα

vi,vj
+γ ·min{dvk ,vj

}α ·

Pn · dα
vi,vj

} (denoted as r.v.U).
We start by computing the PDF of{|hvi,vj

|2 ·min{dvk,vj
}α}

(denoted as r.v.W ). Note that |hvi,vj
|2 (Y for short) and

min{dvk,vj
}α (d̃) are independent. Further,d̃ varies from0 to

min(Rα, w/y) where, w and y are variables representing the
value assumed by r.v.sW andY , respectively. Thus,

FW (w) =

Z ∞

w
Rα

Z w
y

0
fY (y)f

d̃
(d)dd dy +

Z w
Rα

0

Z Rα

0
fY (y)f

d̃
(d)dd dy.

(29)
Differentiating (29) yieldsfW (w). SinceV = Pt · W :

fV (v) =
1

Pt
· fW (

v

Pt
). (30)

The derivation of the PDF ofU is similar to that ofV and
is omitted due to space constraints.

With the new notation, the RHS of (23) is:

Pr(V > U) =

Z ∞

0

Z v

0
fV (v)fU (u)du dv. (31)

Having derived (22) and (23), we have the expression for
Pr (succ | r, lD , dvi,vj

, z
´

.


