Forensic Analysis of Packet Losses in Wireless
Networks

Abstract—Due to the lossy nature of wireless links, it is difficult relating to transmissions? anfh) How can one perform a
to determine if packet losses are due to wireless-inducedfetts forensic assessment to determine if packet losses on lirks a
or from malicious discarding. Many prior efforts on detecting 46 1o natural effects in a wireless network or due to malisio
malicious packet drops rely on evidence collected via pass . . .
monitoring by neighbor nodes; however, they do not analyzette discarding, based on these macroscopic network pararfieters
cause of packet losses. In this paper, we ask: (a) Given ceita ~ Towards answering the above questions, we construct an
macroscopic parameters of the network (like traffic intensty and ~ analytical framework that takes as input, macroscopic mea-
node density) what is the likelihood that evidence exists Wi  surements or configurations of network properties (as adud
respect to a transmission? and, (b) How can these parameters to above) and provides as output the probability that exiden
be used to perform a forensic analysis of the reason for the . . . . 4
losses? Towards answering the above questions, we first biin eX.'St_S relat_lng to transmissions. We call this eY'denmm'
analytical framework that computes the likelihood that evidence Mission evidence” or TE for short. The analytical framework
(we call this transmission evidence or TE for short) exists wth ~ forms the basis for a protocol used within a forensic analyze
respect to transmissions, in terms of a set of network paranters.  to assess the most likely cause of packet losses on links.
We validate our analytical framework via both simulations as In particular, our contributions in this paper are as fobow

well as real-world experiments on two different wireless tstbeds. . . 0 S
The analytical framework is then used as a basis for a protodo (i) Computing the likelihood of TE availability: We

within a forensic analyzer to assess the cause of packet lessand ~construct an analytical framework for computing the likelbd
determine the likelihood of forwarding misbehaviors. Through of TE availability. We capture the factors that affect TE
simulations, we find that our assessments are close to the gmed  gvailability on both individual links and on an end-to-eratip
truth in all examined cases, with an average deviation of 2B  \\e find that the availability depends on network parameters
from the ground truth and a worst case deviation of 15.0%. . . . .
such as packet size, bit-rates, traffic load and node density
We make several interesting observations on the trends in TE
availability when tuning these parameters.

Wireless ad hoc and mesh networks find application in (i) Validating the analytical models via simulations
municipal networks, tactical deployments and disasteovec and real experiments: We perform extensive simulations to
ery missions. In such networks, packet forwarding along\alidate our analytical framework. We also perform experi-
path is an inherent functional requirement. There have besents on (a) a 802.11 testbed and, (b) a testbed with five
studies on packet dropping attacks, wherein maliciousersutWARP boards [5] towards our validation. We find that our
that are required to forward packets do not do so (e.g. [1hnalytical framework can adequately capture the likelthob
Unfortunately, due to the lossy nature of wireless linkssit iTE availability in real networks.
not easy to determine whether packet losses are due to haturgiii) Forensic analysis of packet lossesOur analytical
wireless induced effects (channel impairments or interfee) framework facilitates the estimation of the likelihood dther
or due to such malicious drops. a transmitter and/or a receiver discarding packets, giten t

Forensic systems typically collect evidentiary data tasar conditions in the network. The framework is used as the
detecting such packet dropping attacks (e.g. [2], [3]); &av, basis for a protocol within a forensic analyzer. It takes as
they do not make any analysis to distinguish between wiselégaput (a) the network parameters and (b) monitoring logs
induced losses and malicious drops. Nodes that are partfa@f the considered link; it then yields the likelihood thaet
the network themselves may act as witnesses and monit@nsmitter or the receiver on the link has discarded packet
transmissions [4]; this is an attractive option when neksor We perform extensive simulations and compare the assessmen
are rapidly deployed and dedicated monitoring nodes amesults with ground truth. We find that our analyzer faditita
unavailable. Depending on the deployment, witnesses miay assessments with high accuracy; in particular, they deviat
have evidence (e.g., due to very few witnesses or becausdrof the ground truth by 2.3%, on average.
high levels of interference) relating to certain transioiss. Scope of our work:Our analytical models yield a quick

In this paper, our primary objective is to perform a forensiand effective way of capturing the TE availability in large
analysis on the cause of packet losses based on some masets of scenarios. The advantage of the approach is thatonly
scopic network parameters (such as traffic intensity and nebarse estimate of network parameters is used in order te mak
work density) in multi-hop wireless networks. Specificallye the assessments. In this paper we have considered refativel
seek to answer the questiorfa) Given a set of macroscopicstatic, homogeneous (e.g. a single packet size is usenhgsett
network parameters, what is the likelihood that evidendstex even for this, the construction of the analytical framewibikt

|. INTRODUCTION



forms the basis of our forensic analyzer, is non-trivial.rlo [16]. Reiset al. present models for the physical layer behaviors
importantly, the models capture the trends in TE availghili  of static wireless networks, focusing on the successfukgiac
practice as validated by both our simulations and experisneneception and carrier sense with interference. &iwl. pro-
on real systems. A consideration of more complex settingsgsese a general model that is able to capture collision-iaduc
left to future work. losses in multihop wireless networks, based a limited numbe
The output of our forensic analyzer provides coarse-gdhinef measurements. Woreg al. propose Robust Rate Adaptation
assessments on forwarding misbehaviors. Because of the g&ligorithm (RRAA), by which they try to differentiate betwee
erality of the analytical framework applied therein, theess- fading-related and collision losses. None of these efforts
ments of the cause of packet losses on specific links indyitalhowever, consider the possibility of malicious discardifg
deviate from the ground truth. However, our evaluationsash@ackets.
that in all cases we examine, the average deviation from theThe work that is closest to ours is in [4]. It proposes a
truth is about 2.3%, while the maximum deviation is 15.0%specific witness-based detection scheme to identify fatingr
We wish to point out here that since malicious dropsiisbehaviors. The authors analytically show that theiesud
are always supplementary to wireless induced losses, ithias low false positive and false negative rates. Howevey, th
impossible for an attacker to exactly mimic natural wirslesdo not evaluate how various network parameters would affect
effects. The likelihood of an attack being detected wiledity the evidence availability. To our best knowledge, we are the
depend on the aggressiveness of the attacker; the more ftte to propose analytical models and experimental vabdat
drops, the more the deviation from what is expected due fir this purpose.
natural wireless effects and thus, the higher the chance of
detection.
Organization: The paper is structured as follows. Section Il In this section, we develop our analytical framework to com-
discusses related work. In Section 1ll, we provide a detiorip pute the likelihood of TE availability. At this time, we assa
of our analytical framework. We consider specific networthat neither the transmitter nor the receiver discards gack
parameters and apply these in our framework in Section Iwmaliciously. We defer a discussion of how our framework can
The applicability of our framework in a forensic analyzebe applied in a forensic analyzer to identify such possiedi
is discussed in Section V. In Section VI, we present od@ Section V.
performance evaluations. We conclude in Section VII. Evidence maintenance:In a multi-hop static wireless
network, nodes maintain evidence relating to transmission
as follows: (a) A sender (or transmitter) keeps the signed
In this section we briefly discuss related literature oACK it receives for each packet it send&) A receiver
network forensics and analyzing packet losses in wirelesseates an entry locally for each unique packet received and
networks. digitally verified. (c) A monitoring (witness) node creates an
There is prior work on wireless monitoring at tlmeech- entry locally for each packet that it overhears and verifies.
anism and system desigavel [1], [6], [3], [7], [8], [9], We assume that storage is not a limiting factor in evidence
[10], [11]. Marti et al. design awatchdogscheme to identify collection; one can envision nodes sending coarse-grained
malicious nodes which do not forward packets along a mulinformation relating to collected evidence periodicaly, a
hop path. McGrattet al. [6] design and implement FLUX; central forensic controller. The signed ACK helps in assuri
FLUX automates the collection of forensic data and iderstifismon-repudiation. The sender can validate that it sent thkegia
abnormal traffic and network weaknesses. Rameichl. [3] in question and the receiver cannot deny receiving the packe
design and implement DAMON, a distributed monitoringVithout loss of generality, we assume that an ACK includes
system for MANETSs. In summary, almost all of the aboveender and receiver IDs and thus, an overheard ACK is of
approaches propose techniques for solving specific netwakidentiary value.
problems that require evidentiary data. None of them studyWe expect that evidence is only sent infrequently to the con-
the impact of various network parameters on the collectidroller since our objective is to investigate long-termeets. It
of evidence as we do here. Moreover, only a few use tlean be easily piggybacked onto other control informatiog.(e
evidentiary data to detect packet dropping attacks [3]; [8louting updates) and thus, we expect that the overheackly lik
however, unlike in these efforts we try to determine theljiketo be small. Our focus in this paper is more on the forensic
cause of packet losses using a macroscopic view of netwankalysis itself and not on the evidence collection prodbsss,
parameters. we do not perform an analysis of the overhead consumed due
ETX [12] and ETT [13] are metrics that have been designeéd evidence gathering.
to estimate the packet delivery ratio on links; howeverythe Hop-level TE (HTE): The availability of hop-level TE
are empirical and more importantly these metrics reflect theflects the likelihood that evidence exists relating tadra
packet loss rate but do not give insights into the root-catfisemissions on a link. Commonly used notations are enlisted in
packet losses. Table I.
Some prior efforts attempt to distinguish packet losses dueAs stated above, for a transmission betwegandw;, there
to interference from those due to channel fading [14], [15&re three sources of evidence.

Ill. OUR ANALYTICAL FRAMEWORK

II. RELATED WORK



N Total number of nodes data transmission. Considering all possible values thedn

Vs Transmitter . . .

0, Receiver take, we get the marginal probability that at least one g#ne

d,,., | Distance between; andv; overhears a given transmission.

P,,., | Received power at; from v, In a similar way, we comput@r.,..;_a as follows

hv, »; | Channel attenuation between and v; N—2

n Expected value ofhy, ., K Prsres_a = Pr(succ|rlp)- (Z Pr(Z int|ro,la) -

P; Transmission power 2=0 4)

Pn Noise pOWGI‘ (1 _ (1 — Pr (SUCC ‘ TO71A7Z))N7Z72)) )

« Path loss exponent

z Number of interferers The successful overhearing of data and ACK transmissions

Z Set of méerfefrfgrs = - by any given witness are assumed to be independent. In

A Expected traffic sent per node in unit time reality, there may be correlations due to interferencecedfe

A Expected interference level perceived by a ngde h heari de. H h . hich
projected from another node in unit time at the overhearing node. However, the assumption (whic

p Transmission bit-rate we make for tractability) is shown to be reasonable by our

v SINR threshold simulations/experiments. With this:

Ip data packet length

la ACK packet length Prores = Propes p + (1 — Prapes_p) - Prsres_a- (5)

TABLE I: Notations Hop-level TE availability: The probability that at least
Source 1:v; has the signed ACK fromw; for packet one source of TE is available for a transmission, under the
(sre,dest,pkt SQN). This requires that(a) v;’s data packet assumption of evidence independehise

is successfully received by; and, (b) »;'s ACK packet is 5
successfully received by;. Prgrg=1-— H Pr(source i is unavailable)

Pr(succ|r1p) denotes the probability of a successful i=1 (6)
data transmission with rate and packet lengthp. Simi- =1— (1~ Prsrc1) - (1= Prspe2) - (1 = Propes).

larly, the probability of a successful ACK wansmission is Accounting for retransmissionsNext we consider a limit

Pr (suce| o, La), assuming that an ACK is sent at the base rajg n, retransmissions for the same data packet. The success
7o _and ha§ a Ier?gthq. The probability that the first source Ofof each transmission is independent from that of another
evidence is available is (assuming that these are staggered in time, this is a refalgsona
assumption since the temporal network conditions areylikel
to change). A successful exchange of data and ACK packets
Source 2:v; has a stored entry|v|src|destlpkt SQN| results in the termination of retransmission attempts.sThi
timestamp]|. This source of TE requires a successful transmiprobabi“ty of successful exchange' denoted[byucc_ez is
sion fromw; to v;, the probability of which is

Prgre1 = Pr(succ | r,lp) - Pr(suce|ro,la). 1)

Prsuce_ex = Pr (succ| r,lp) - Pr(succ|ro,la), (7)
Prgreo = Pr(suce | r,lp). (2)
_ ) The probability that there areretransmissionsi - 1 trans-
Source 3: At least one witness has a stored enfiifsrel  issjon attempts) is denoted &s(rtz) and is given by:
dest|pkt SQN|timestamp|. This requires at least a node other

thanw; or v; to overhear the data transmission fremor the Pr(rtz = i) = { Prsuce_ex + (1 = Prouce_ex)’ 0<i<mn,—1
ACK transmission fromy,. 1= 305! Prirte = j) i=ny

Let Pro.ca_p @nd Pry.c3 4 denote the probabilities that at ence the TE availability probability with a retransmissi
least one witness overhears the data and ACK, respectively,: o IS
Note that due to the half-duplex property of typical radio .
devices, it is assumed that a node cannot be an interfere and  p,.,,. .1, ] = ipr(m i) (1— (1 Pryrp)*h).  (8)
witness for the same transmissiofiherefore, when there are i=0
totally N nodes in the network andinterferers, the number  path-level TE (PTE): Next we look at the path-level TE,
of witnesses cannot exceed- » — 2. Thus we have: i.e., the evidence relating to all transmissions on an end-t

N2 ' end path. The TE availability on each hop along the path is
Prsres.p = Z:B Pr(z int|rlp)- (3) assumed to be independent of that on the other hops. Again,

- in reality the TE availability across hops may be correlated
but we make this assumption for tractability; our simulatio
in which (1 — (1 — Pr (suce | r, lez))N,zﬁ) is the probability and experiments (where there is correlation) verify tha th
that given - interferers, at least one witness overhears ti@sumption is indeed acceptable. The PTE requires the HTE

(1 — (1 = Pr(succ|nlp, z))Nﬁz*2> ,

Iwithout loss of generality we assume that the monitoringiaiey or 2For v; to transmit an ACK, it must have successfully received the
witnesses are active nodes in the network. It is easy to maidéf analysis if corresponding data packet.
evidence is collected only by passive monitoring nodes. 3Dependencies between sources of evidence are discussedtiarSV.



on all the hops of the path. The PTE forahop path, denoted to-Interference-and-Noise) physical modehere node, suc-

by Prprg[H], is given by: cessfully receives the transmission from nagléff :
Py, v
H Vi,V
> 7, 11
Prpre[H] =[] Prarelat h™ hop). 9) Pn+ > Py, v, ()
h=1 ke{l,...,N}\{i,5}

Bit-rate selection: Different bit-rates used on differentwhere, P, ., is the received power from; to »; and is
hops will cause the TE availability on each hop to diffecomputed using (10)P, is noise power.w, is one of the
The bit rate used on a link depends not only on the physidaterfering nodess, ., (i) Porww, 1S the accumulative
conditions (e.g., the distance between the communicatirg pinterference power perceived hy. ~ is the SINR threshold
the temporal fluctuations due to fading) but also on the ratéich varies with transmission bit-rate.
adaptation algorithm in use. Given these, it is difficult tore Use of multiple bit rates:The data packets are sent at a
up with a distribution for the bit rates used by nodes in ehosen transmission bit-rate from a set of available rédies.
network. For simplicity, we assume that a bit rate is setbcteach rate there is a corresponding SINR threshold.
randomly from among the set of available rates. Note however Media access control (MAC)To remove protocol depen-
that our analysis can easily incorporate other distrimsiodencies, we do not assume a specific MAC scheme. Instead,
characterizing the usage of different bit rates. The priibpab we use a parameter to characterize the interference thasnod
of PTE availability is computed by considering all possiblperceive, which in turn reflects the interference resohabg-
combinations of rates, on each hop of the path. ity of the MAC in use. This simplified representation avoids

With (9), we see that the same parameters that affeopdeling the operations of specific MACs. As demonstrated
HTE affect PTE. In addition, the hop count impacts PTE; later in Section VI, this model can be used to characterize
generally, as one may expect the longer the path, the lowaultiple commonly used MAC protocols.

PTE. Node distribution: The network consists ofv uniformly

Note that the PTE as defined here is strict in the sense tBégtributed static nodes i € {1,..., N}).
it requires HTE on all hops. The TE of the transmission on Traffic pattern: Nodes send Poisson traffic, including their
hop », can imply the success of transmissions on the previo@@n packets and those to be simply forwarded.

h—1 hops, even though the HTE may not be available for all Computing TE availability: Towards computing (6), we

such hops. We will consider this sort of implicit PTE in futur start by considering a transmission of a data packet froto
work. v;. Given the distance between then) ., the transmission
bit-rate in use-, packet length,, and the number of interferers

IV. EXPLICITLY COMPUTING THE LIKELIHOOD OF TE z, the probability of the transmission succeeding (denoted a

AVAILABILITY Pr (succ | r,lp, du, v;,2)) IS
Now that we have computed the high level formulation Py .
of the likelihood of TE availability in Section Ill, we need Pr(succ|rlp,dv,v;,2) =Pr| ————>7v|, (12)
: Pp+ Y Puw,
compute the probabilities of success in (1), (2) and (5). = ’

However, in order to do so, we need to provide specif{,c\:/herez is the set of interferersz c (1. . N1\fi. % and |zl —
characteristics of the network. We proceed to do so in this C AL NI} 2] =
The value ofy here, corresponds to the ratén use.

section using commonly used models for representing tfe, . ) .
channel, the node density and the generated traffic; the lsmode With respect to the right hand side (RHS) of (12) there are

seem to characterize practical settings with good accurt cases: (i) in the absence of interference (whero) and,

as seen in our real experiments later. Note here that, ot ' rWlth the presence of interference (when = < ~' - 2).

models can be easily incorporated into our generic analyti etailed derlv_atlons of (12) for these two cases, are pteden
framework. In an appendix.

. . . Next, we remove the conditioning on the number of inter-
The channel modelThe received signal strength from nodg .
o at nodes. is: erersz from Pr (succ|r,lp,dv, ;,2). A IS @ parameter that
71 J .

captures the expected interference at a given node from a
Pr - |l |2 neighbor node, per unit time. In reality this is dependent
Poivo; = Cae (10)  on both the traffic intensity and the MAC protocol in use.
o However, we try to capture the interference experienced at a
where, P; is the transmission powet.,, ,; is the attenuation node, simply with this parameter. If interference is mamiage
due to fading between the communicating pair. As typical, we.g. with TDMA or CSMA/CA), A is likely to be low. If the
assume that., ., is a Rayleigh distributed random variabldnterference is unmanaged (as with say Aloha) and is high,
[17]; thus, |k, ., |? is exponentially distributedd., ., is the A will be high. If we assume asynchronous transmissions
distance between; andv;. a is the path loss exponent. and fixed sized packets, it is easy to see that a packet is
The collision model:There are several models used to capaterfered with, if another node initiates a transmissiathin
ture collisions in the literature [18]. We use tB&\R (Signal- the packet transmission time (saly or for a duration of- prior



to the beginning of the intended transmission (similar te trcollected by nodes at runtime and the packet delivery ratios
analysis of the Aloha medium access scheme in [19]). Th{®DRs) reported by the receivers. It outputs the assesgment
if the traffic load of a node is\, the projected interferencesults on possible forwarding misbehaviors as discussemhbel

load can be characterized hy. Hence in this specific case, ‘ ; :
. . . . Measured or Configured Ana\ytlca\ ) Forensic
A =2X. When the traffic load is Poisson, the probability that & neworkParameters G . Estimated TE and FDR Assessment
transmission does naverlapwith the intended transmission RN analyae)
betweenv; andw; is: Collected Evidence and PDR
9(071\12) _ e <Al£) . (13) _ _ Fig. 1: _Forensic analyzer _
r r Forwarding misbehaviorsNodes on an end-to-end path in
The probability that there are (0 < = < N —2) interference a multi-hop wireless network may indulge in forwarding mis-
sources during the data packet transmission times: behaviors. Alying transmitter may claim to have attempted
Ip\* I to forward packets, but may not have done so. Evidence for
Pr(z int|rlp) = (1 —9(0,A7)) {g(0,A=2)} 2, the transmissions that did not occur will not exist.lying

(14) receivermay claim to have not received packets that were in

fact received. If a receiver denies receiving packets, thlg o

The probability of a successful data transmission given tl%%urce of TE comes from any witness overhearing the data
bit-rate and the packet length in use, and the distance betw?ransmissions (available with probabiliyr...; »)

the communicating pair, is: Threat model:In this work, we only consider forwarding

Pr (succ | r,lp,dv; v;) misbehaviors as above. We assume that the network pa-
N—2 (15) rameters are accurately gathered and nodes do not lie with
= > Pr(Z int|r,lp)- Pr(succ|r,lp,dv ;) - regards to these parameters. We assume that keys cannot be

#=0 compromised to create fake signatures. We also assume that

Next we remove the conditioning an, ., from Pr (succ |7,  there is no evidence manipulation i.e., none of the nodes
Ip,dv, v,). As discussed, if one were to assume a uniform nodeeate fake evidence or delete the genuine evidence. While a

deployment distribution, the PDF af, ., is 2. Thus: receiver discards packets as above, we assume it stilifsllo
R 2d the protocol in sending ACKs (only) for packets that it does n
Pr(succ|rlp) = /O Pr (suce | 7,1p, dv, v;) Ve b (16) discard. Given these assumptions, the first source of eviden

is conditional on the second source i.e., an ACK is possible
6ﬂly if the receiver says that it received the data packet
successfully. Overheard ACKs, as part of the third source of
evidence, are also dependent on the event that the receiver
L . successfully receives the data packets. In other worddirtte
tioning Ondy, ., from Pr (suce |, 1p.du, v, 2) (Similarto that g, o of evidence and evidence with overheard ACKs will be
in (16)). Together wither (2 int | r.1p) and Pr(suce|r, Ip),  oyailableff the second source of evidence is available (receiver
We g€l Proer, Prarcz Nd Prares, and finally the probability | successfully recorded the data packet). With this gassy
that hop-level TE is availablePtsrz) in (6). to see that (6) can be refined{o- (1— Prs;c2)- (1= Preyes p)}-

V. OUR FORENSICANALYZER Analysis of misbehaviors: Suppose thatPr(transmitter
8/_ing] is the likelihood of a transmitter lying about sending

L : . ackets (which it does not send). Liet [receiver lying] be the

tocol within a forensic analyzer. Using the framework th . . . =
. hel ikelihood of a receiver lying of not receiving packets (whe
analyzer computes offline, the probabilities of packetdsss. . : . .
- . o . it discarded such received packets). With these forwarding
and TE availability under different conditions, in a benign . ) oo S
: . rrHsbehawors, the likelihood of TE availability is:

setting on a link, based on a set of network parameters. Tt
then compares these computed values with what is observedare = 0 Prtransmitter lying]+
during network operations to estimate the likelihood of @. (1 — prltransmitter lying]) - Prouce - (1 — Prireceiver lying])+
transmitter or receiver discarding packets and lying alloeit 4 4 . .

) . . Proesp-(1—Prlt tter [ - Prsuce - P l +
same. As discussed earlier, the packet losses due to nualicio *"**" ( "l mnsml‘ « y%ng]) " rlreceiver lying]
dropping will always be in addition to what is experienced i "sres.p * (1 = Pritransmitter lying]) - (1 = Prouce),
benign settings due to wireless effects. The more aggeessiv (17)
an attacker, the more will be the deviation between what where, Prs... is simply a shortened notation farr (succ | r,
observed and the expected number of packet losses in benign The terms in the summation on the RHS of (17) corre-
settings. spond to the TE availability over all possible combinatiofis

In this section, we describe our forensic analyzer in detaihe transmitter and the receiver lying as detailed in Table |
Performing the forensic analysis:As illustrated in Fig. 1, As discussed, if the transmitter is lying, no TE is availaltie
the forensic analyzer takes as inputs 1) the estimated prdee receiver is lying, withesses may or may not have evidence
abilities from our analytical framework and 2) the evidenc® the transmission.

incorporate other distributions of interference leveld aode
deployments.
Pr(succ| rlp,z) in (3), is obtained by removing the condi-

Our analytical framework is used as the basis for a pr



Case TE availabilit . . .
pmbabimyy the volume of information collected towards performing the

Transmitter IyingI I 0 forensic analysis (since microscopic information fromalbc
Transmitter not lying, receiver receiving the packet antlIpimg 1 .

Transmitter not lying, receiver receiving the packet anddy Prgres_p nelghborhoods are needed).

Transmitter not lying, receiver not receiving the packet Prgres_p

VI. EVALUATIONS

In this section, we first validate our analytical framework
(in benign settings) with both simulations, and experiment

If Prltransmitter lying] and Pr(receiver lying] are set to 0, on two different testbeds. We also examine the trends in TE
(17) reduces tq1—(1—Prsrc2)-(1-Prares_p)}, Which is exactly - availability by varying different network parameters. ke
the TE availability in benign settings. provide an understanding of the likelihood of the existence

If a transmitter or/and receiver indulges in forwardingf TE in various settings. Finally, we conduct a forensic
misbehaviors, the PDR reported by the receiver is affecteghalysis of packet losses to assess the likelihood of fatwgr
Only those packets that are sent by the transmitter, sdctlgss misbehaviors via simulations.
received and truthfully reported by the receiver are cadinte The default parameter settings (unless specified otherwise
towards successful delivery. This PDR is expressed as:  are listed in Table Ill. Without loss of generality, the vesu
for the rates and SINR thresholds are adopted from 802.11a.

TABLE IlI: TE availability under all possible cases

PDR =
(1 = Prltransmitter lying)) - Prsuce - (1 — Prlreceiver lying]). N 10
(18) Py 3.16E-2watts
P, 3.16E-10watts
Solving (17) and (18) yie|d33r[transmitter lying| and pr ;\% igoprlgfsec
[receiver lying] as follows: n 1.0
« 2.0
Prtransmitter lying] = Data packet length| 50/100/200/400/800/1500 bytel
~ (19) ACK length 20 bytes
1 _ Prare = PDR+ PDR* Prares p Rates and SINR | See Table IV for the SINR
Pryres_D ’ thresholds thresholds and rates.

TABLE llI: Default parameter settings
Pr(receiver lying] =
PDR - PTS’!‘CS_D

1

- —>= - : : [Rate [6 [9 [12 [18 [ 24 [36 [4 [5 |
Prouce - (Prarp — PDR+ PDR - Pryres p) [SINR | 6.02 | 7.78 | 9.03 | 10.79 | 17.04 | 18.8 | 24.05 | 245 |

(20)
TABLE 1V: 802.11a Rates (Mbps) and SINR thresholds (dB).
From (19) and (20), we see that there are four values es-

sential towards computing the desired probabilities.tFose
would need the measured actual TE availability and reportet
PDR from the network during operations. The probability
Pryrp is simply the ratio of the number of packets for
which evidence is available to the total number of packets
the transmitter claims to have sentr,..; p and Preyec
are obtained from the analytical models. Using these, the
desired probabilities for the setting are computed. Hnall . . .
the probability of packet losses due to either the transmitt (E),gp_‘”za}lﬁ'&?_hevm TE availabilly %'rfgggat};ﬁ’tg
lying or the receiver lying is{Pr[transmitter lying) + (1 — o o )
Prtransmitter lying]) - Prlreceiver lying]}; The complementary A. Model Validation via Simulations
probability to this yields the likelihood of the losses bgin  Simulation setup: The simulations are performed using
because of natural effects (channel induced or interfeeinc OPNET modeler version 14.5 [20]. In our simulations, we
the wireless network. first consider a single hop wireless network. Hexenodes
Discussion: We wish to acknowledge here that the actuare uniformly distributed in a circle with diameter. The
TE availability on specific hops, even without any forwaglinconsidered receiver is positioned at the center, whilertmest
misbehaviors, may vary from that predicted by our analyticanitter is randomly picked from among the other- 1 nodes.
framework. Our assessment may inevitably deviate from tfig&e transmissions experience both path loss and Rayleigh
ground truth. However, the approach provides a quick amading. Next, we consider a multi-hop network by spreading
coarse-grained estimation on the likelihood of forwardingv nodes uniformly in a circle with diametex/5r. The paths
misbehaviors. In Section VI, we find via simulations that ouvhose PTE is considered, are selected such that the nodes
assessments do not deviate much from the ground truth. Bor the paths are near the center of the circle, instead of
further fidelity, the local traffic and topology in the proxisn being at the network edge. We choose these configurations
of a link of interest can be considered and the analysis mdd- eliminate edge effects while keeping the node density of
ified for that setting; however, note that this would inceeaghe network fixed. Traffic are sent between randomly chosen
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source destination pairs. The traffic generated at a nod@ is 2 Node density:We increase the number of nodes deployed
pkts/sec. Shortest path routes are used. Nodes transrkitpacfrom 10 to 20 and 30. As a consequence the node density
at random instances in time to contend for channel access.iddreases. The analytical results are in Fig. 3 (simulation
the end of a run, we combine the traces from all nodes arebults are similar and not shown for purposes of clarity).
calculate the number of unique transmissions recorded. Thiee total interference levels imposed on a node is higher due
fraction of this number over the total number of transmissio to the higher node density. This hurts both packet reception
occurring during this run, is the TE availability probatyjli and overhearing and eventually hurts TE. However, a high
The data collected for each specific scenario is an averagmle density means that there are more nodes serving as
over 20 runs. potential witnesses. This helps TE collection. Figs. 3@ a
Trends in hop-level TE availability: We first examine the 3(b) indicate that (a) when low rates are used, fitst factor
trends in HTE availability when various parameters are duneseems dominant and, thus TE availability tends to decremse a
Benign settings are considered. N increases; (b) when high rates are used,sbeondfactor
Bit-rate and packet length\We first vary the transmission seems dominant and TE availability increases with
bit-rate and packet length. The other parameters are atiltlefa Traffic volume Now we adjust the traffic generated per
settings. Fig. 2 shows the trend in HTE availability fromhode to be 5 times less (4 pkts/sec) and 5 times more (100
the analysis and simulatiohsWe see that for a fixed bit- pkts/sec). As we see from Fig. 4(a), TE availability is fairl
rate, a smaller packet length leads to higher hop-level High and alike across all packet lengths with low traffic
availability. This is because, with a smaller packet lengtholume. It is because the main reason for packet failure is
the air time is small; thus, the chances of a packet beifige effect of the channel and not the interference. In afuiti
corrupted due to interference either at the receiver or @t tiith less traffic to send, nodes are more likely to be witngsse
witnesses is lower. Furthermore, using lower bit rateslt®su and collect TE. When traffic volume is high (Fig. 4(b)),
almost perfect TE availability when the packet length is kmaTE availability drops drastically; high interference uffE
When the rate increases the TE availability decreases. Wgbllection and nodes have less time for overhearing.
higher rates, packets are more susceptible to channelédduc Retransmission limit:We vary the retransmission limit from
losses. This decreases the probabilities that the recameethe o (default) to 7. We notice that at low and moderate loads
overhearing witnesses successfully receive the tran8mss gjlowing more retransmissions increases TE availabitpae
The above effects are more pronounced with larger packgight expect (Fig. 5). The TE availability drops when the
lengths. In the case we consider, when the packet lengthsgrawtransmission load increases beyond a certain point. iNote
beyond 800 bytes, even the lower rates do not guarantee hight node density is a factor in determining when such a switc

TE availability. _ _ o over would occur. Due to space constraints, we do not discuss
The results from simulations are shown in Fig. 2(b). W ore details here.

observe that the trends hold in terms of TE availability ,sthu Trands in path-Level TE availability: We vary the packet
validating the applicability of our assumptions. length and hop count; other parameters remain at default

4The simulation results for packet lengths of 50 and 100 bgtessimilar settings. We look at pthS with hOp Cour.]ts from 1 to 7. Recall
to that of length 200 bytes; they are not shown for clarity. that we assume a uniform rate selection at each hop. The
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results in terms of PTE availability probability generateith and modulation schemes. There is no option to change the
our analytical models and from simulations, are in Figs. & ariorward error correction or FEC, code rate on our boards. The
7 respectively. We observe that: (1) A shorter packet lengtiacket generation rate is 200 pkts/sec. We use 3 transsnitter
yields a higher PTE availability. This trend is consisteiithw and 2 receivers for a period of 10 seconds.
that in HTE. (2) The PTE decreases quite fast with increasingEmpirical hop-level TE: First, we report our experiments
hop count. With the hop count being increased by 1, the P the 802.11a testbed. We plot the TE availability proligbil
drops by 10%-20%. (3) The simulation results are similar for various packet lengths and with different rates in Fig. 9
the analytical results. We see that low rates offers high TE availability. At higher
Fig. 8 presents the CDFs of the PTE for all the cases thates, the TE availability drops slightly=(10%), especially
we examine. We observe in about 80% of the cases, the PTHois larger packet sizes. A quick look at Fig. 4(a) shows that
above 0.5; in about 30% of the cases, it exceeds or approaciesresults with our model with low traffic volume is similar
0.8. This implies that, there is a good likelihood that theEPTto what is seen here. This is because, CSMA/CA manages the

is available in typical settings. interference well to avoid interference in the vicinity ofi a
o . _ active transmission. There is still interference due tcdbid
B. Model Validation via Experiments terminals, but the levels are low. Thus, by calibrating our

We examine the TE availability in real networks: (a) in dnodel with a lowa one can obtain trends that are likely to
802.11 testbed with CSMA/CA and (b) in a testbed of WAREXist with MAC protocols that manage interference (as with
nodes with Aloha. Our objective is to show that our framewor02.11 or TDMA).
accurately characterizes the TE availability that one cqueet Next, we consider unmanaged interference with Aloha. We
in real networks. use our WARP testbed here. Since, our testbed consistsyf onl

Experiment setup: We conduct two sets of experiments, tdive nodes, we use a high packet generation rate in order to
examine the TE availability innterference-manage(802.11 have a desired interference level.

CSMA/CA) and-unmanagedAloha) scenarios, respectively. Fig. 10 shows the TE trends with the four modulation

The first set of experiments is performed on a 42-node wireehemes with Aloha. With our WARP boards, the FEC code
less testbed deployed on an entire floor of a campus buildirgte is fixed and hence, there are not as many bit-rates tct sele
The nodes are based on the Soekris net5501 hardware corffigm. The fairly limited setting of the testbed makes it didfit
uration, and run a Debian Linux distribution. We experimerio directly compare the results with the heavy load scenario
with the 802.11a mode in order to avoid interference from Fig. 4(b), although the trends are similar. At low rates th
co-located 802.11b campus WLANs. RTS/CTS is disable@lE availability is low. As we increase the rate it increased a
Each scenario involves different sets of about ten nodes.finally drops due to channel induced effects with QAM 64
each scenario, every node generates traffic to a randomigdulation. Note that there is no one to one mapping between
chosen neighbor, while running TCPdump to record all packdhe x-axes in Figs. 10 and 4(b). Thus, it is difficult to get an
it receives or overhears. The TE availability probabilisy iexact match. However, the model does indeed predict thd tren
computed as described earlier with our simulations. of what could be expected in practice.

The second set experiments is on a 5-node WARP (WirelesEmpirical path-level TE: We use our 802.11 wireless
open-Access Research Platform) [5] Radio testbed in a l@stbed to validate the model for PTE. We create a number
setting. Nodes access the channel using Aloha, which runsan3 and 4-hop paths to measure the probability of end-to-
top of the WARP OFDM implementation. Traffic is generatednd TE availability. Note that due to the small scale, such an
on the board itself. When a node is idle (not transmittingdxperiment was not possible with our WARP hardware. We
it logs the data and ACK transmissions going on in itased static routing to create multi-hop paths to ensure that
neighborhood and these logs are continuously sent to ttmete flapping did not happen. Default rate adaptation isl use
central server which is connected to all the nodes using By nodes. Each node along the path logs the traffic which is
Ethernet interface provided on each node. The central serbeing transmitted in its vicinity, using which we calculde
is a PC which is basically used to send control messagesP®E for each multi-hop path. Two packet sizes are considered
the nodes and to collect logs sent by the nodes. We evalukitis seen in Fig. 11 that the PTE availability decreases as th
the trends in TE using this testbed by varying packet lengthep count and packet length increase. We see a good match



. . . . Ground Assessment Results

with our analytical results generated with a low traffic voleL Trutﬂ (%) avg dev (%) | min dev (%) ! max dev (%)

Summary: To summarize, both our simulation and exper- transmittgr 10 i-gg 8-88 111-0757

. - - receiver . . .

imental results demonstrate_ that by appropriately céiitga ransmitter 0 523 002 1039

our analytical framework with network parameters (packet receiver 10 2.71 0.00 9.62

B f f : : transmitter 10 1.80 0.18 6.08

size, bit rate in use, node density, interference level can receiver 10 184 0.38 e

get a good indication of the likelihood of TE availability in transmitter 20 5.36 0.32 15.00

; ; : ; ; . receiver 0 2.92 0.00 11.21

practice. This can not only aid forensp :_:maIyS|s (as dmds_ T T35 500 579

next), but also allow a network administrator to determine receiver 20 2.32 0.35 9.24

; itAri i i transmitter 20 1.56 0.38 5.11

the efﬁcacy of a monitoring system given specific network oo 20 Tee 05e 209

conditions. transmitter 40 3.87 0.29 10.89

receiver 0 2.59 0.00 9.09

i i i transmitter O 0.76 0.00 4.90

C. Forensic Analysis Using TE BRlAA P 009 e

In our last set of evaluations, we aim to provide the tfansmmig 40 (1)8? 8-?2 géfl)

. . . receiver . . .

assessments of forwardlng m|sbehQV|ors. We randomlytseleC  —ansmitter 60 PR 00a 555

up to one hundred links from our simulated network and on receiver 0 1.84 0.00 8.85

each of these links, ten thousand packets are scheduled to be | fnsmuero 9.23 0.00 L2

' ! . ) i receiver 60 1.89 0.50 5.20

sent. We emulate forwarding misbehaviors at the transmaitte transmitter 60 0.39 0.12 128

receiver 60 0.43 0.09 1.34

and receivers, individually and jointly. A transmitter g by
z%, implies that it does not transmi% of the packets that

TABLE V: Assessments on transmitter and receiver lying

it is supposed to send. A receiver lying by means that it gevelop an analytical framework that takes as input various
claims to have received only— % of the packets that it in macroscopic network parameters and yields as output, the
fact receives. We vary the fraction of lying (10%, 20%, 40%yelinood of evidence availability. We validate our artgpl

and 60%) at the transmitter and receiver, respectivelys&hgramework via both extensive simulations and experiments o
preset values correspond to the ground truth. two different wireless testbeds that employ different MAC

We collect the actual TE and PDR for each transmissigfiotocols. We then discuss the applicability of our anabfti

period. Having the measured values from the simulations afjimework in a forensic analyzer to determine the likelithoo
their estimated counterparts from the analytical modeks, Wf 4 transmitter or receiver discarding packets malicipusle

use our forensic analyzer described in Section V to assess §low via simulations that the analyzer is able to determine

likelihoods of the transmitter and/or the receiver lying.
The assessment results are presented in Table V. Column

one contains the ground truth, while columns two to four

contain the average/minimum/maximum deviation of the agi]

sessments from the truth (expressed as percentages) acr[%f

all considered links. The deviation is calculated|@Sessed
value — truth| and is computed for both the transmitter and

these likelihoods with high accuracy.
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APPENDIX

The notation used here is carried over from Table |. R ) ) -
There are two cases when considering (12). In the abseN#ered is the distance from an interfereriq The probability

of interference, distribution ofd is simply the distribution of distance between
Py, node pairs in the network (since the interferer could be
Pr (succ | r,lp,dv, v,z =0) = Pr (P—J > v) anywhere within the range af;). If one assumes a uniform
BT " (21) deployment of nodes, the probability density function (fPDF
= Pr <|h,ul.,vj 12 > ”JP> : that a node isi units away from another node & wherer
‘ is the maximum possible distance units between a pair.

We denote%# by c. Recall that|h,, . > is an The PDF 0fdynin, fa;, (d) is then given by:
exponentially distributed r.v. with parametgrThus, fa . (d) = iFd (@) =z (1= Fy(@)= . f,(d)
min dd main
Pr (‘hviﬂfj|2 > C) :/ 7]677wd50. (22) _ (1 d2 )271 2d (27)
e TR "R®

With interference, the success probability is computed as: The PDF of o .

expressed as [21]:

(denoted asi), a function of d,i., IS

Pr(succ|r,lD,dUi,U.,lngN—Z) 1 1 1
' fild)=—-d@™D g (@), (28)
- Pr Py > We now have the PDFs for the three r.wsn{d., ., }*,
Po+ Y Pu o, ez lhogw; 12 @nd |y, ;2. To compute (23), we need to
ez further get the PDFS fofP; - |hu, v, |2 - min{ds, », }*} (denoted
P'h/U”‘Q Py - |hy 1/-2 . . 2,4« mi o,
_ ( g d‘a i0; ] . 2 d\a vy | +7.Pn> as anew r.vw) and{y- P, kze:z‘h%%' A3, o, +7-min{du, v}
Vi,V kez Vi, Vj P, 'd”?/i,’l)]‘} (denoted as I’\:U)

It is difficult to compute the above since the distances from We start by computing the PDF @fh., ., |? - min{du, v, }*}
v;, to different interferers will be different. For tractabjl (denoted as r.vw). Note that|h.,.,|> (v for short) and
we make a conservative approximation that all the intererenin{d., .,}* (d) are independent. Further,varies fromo to
are at the same distance as that to the closest interfetg¥ tomin(rR~,w/y) Where,» andy are variables representing the
(denoted asnin{d., ., }). With this, we find a lower bound on value assumed by r.vis' andY, respectively. Thus,

the success probability (upper bound on failure probabiéis

follows: oIy #s [R®
Fvw) = [ 7 v@ia@dady+ [*[7 pysadday.
Pr(succ\r,lD,dviyuj,lSZSN—2) wa /0 0 0 (29)
P'h1/>1/-2 P'hv 1/-2 i iati i i = . B
[P |ho; o5 . ' |hy, 0] iy P Differentiating (29) yieldsfy (w). Sincev = p, - W:
3, 0, jez mindduy v, (23) ! Y
fv() == fw(=)- (30)
Py Py

= Pr (P |ho; v, |2 ~min{du,, v, 1Y >

7 P 3 Vg 2 S, ) 7 min{dug )} P dS, )
keZ

The derivation of the PDF of is similar to that ofy and
is omitted due to space constraints.

With the new notation, the RHS of (23) is:
On the RHS of (23), there are three rwsn{d,, .,}°,

Swez lhugo; 12 AN |huy o, 2. SINCE [hy, 0, |2 IS exponentially Pr(V >U) :/0 /O fv () fu (w)du du. (31)

ke . 5
distributed with parametef, the SUmy_.c ; lhv..,|* follows Having derived (22) and (23), we have the expression for

50ur simulations validate that this is reasonable. Pr(succ|r, Ip,du,u;, z).



