
Analyzing BGP Policies: Methodology and Tool
Georgos Siganos

Dept. of Computer Science & Engineering
University of California, Riverside

Riverside, USA
siganos@cs.ucr.edu

Michalis Faloutsos
Dept. of Computer Science & Engineering

University of California, Riverside
Riverside, USA

michalis@cs.ucr.edu

Abstract— The robustness of the Internet relies heavily on the
robustness of BGP routing. BGP is the glue that holds the Internet
together: it is the common language of the routers that intercon-
nect networks or Autonomous Systems(AS). The robustness of
BGP and our ability to manage it effectively is hampered by
the limited global knowledge and lack of coordination between
Autonomous Systems. One of the few efforts to develop a globally
analyzable and secure Internet is the creation of the Internet
Routing Registries (IRRs). IRRs provide a voluntary detailed
repository of BGP policy information. The IRR effort has not
reached its full potential because of two reasons: a) extracting
useful information is far from trivial, and b) its accuracy of the
data is uncertain.

In this paper, we develop a methodology and a tool (Nemecis)
to extract and infer information from IRR and validate it against
BGP routing tables. In addition, using our tool, we quantify
the accuracy of the information of IRR. We find that IRR has
a lot of inaccuracies, but also contains significant and unique
information. Finally, we show that our tool can identify and
extract the correct information from IRR discarding erroneous
data. In conclusion, our methodology and tool close the gap in
the IRR vision for an analyzable Internet repository at the BGP
level.

I. INTRODUCTION

The overarching goal of this work is to model and improve
the robustness of the Internet at the BGP level. The Border
Gateway Protocol [1] is the protocol that dictates routing
between Autonomous Systems (AS), and implements their
business policies. The importance of BGP has become clear
in the network community over the last five years, and several
efforts have improved our understanding of BGP [2] [3] [4].
However, we still have a long way to go: studies show that
BGP operates in a far from robust state and many of its
behaviors are not well understood. The need for a robust
Internet has created efforts like the Internet Routing Registries
(IRR), a distributed database, where ASes store their policies.
However, IRR has not reached its potential nor fulfilled the
initial vision [5]. Our work attempts to take the IRR to the next
level. We provide a systematic approach and a tool, Nemecis,
to extract and infer useful information from IRR, with the
ultimate goal to use this information to model, manage and
protect Internet routing.

There exist a number of tools to measure actual BGP rout-
ing, like ping, traceroute, looking glass, BGP table dumps. But
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there does not exist a tool to bridge the gap between intended
policy (configuration) and actual routing. Internet Routing
Registries (IRR) [6], contain the policy of a large number of
networks, expressed in a high level language, RPSL [7] [8].
These registries are considered by a lot of people to be useless
and outdated, based primarily on empirical evidence. To the
best of our knowledge, there does not exist a tool that can
analyze these policies, and check their validity or freshness.
The registries are maintained manually and in a voluntary basis
to a large extent, and the policies remain as simple text. Thus,
analyzing IRR is not a trivial task. The difficulties lie in: a)
RPSL is very flexible, so policies can be very complex, b)
there can be many different ways to express the same policy,
c) the registries can contain inaccurate, and incomplete data.
At the same time, the information of IRR is important in order
to understand and interpret Internet Routing, since Routing
tables are not sufficient to understand the intended policies.

Despite recent efforts, we do not have a complete model for
BGP, and the robustness problem has not been solved. First,
several measurement studies show that the Internet behavior is
not fine-tuned [9] and it can be destabilized through cascading
effects [10]. Second, Internet routing relies on a large part
on trust. Networks usually assume that the information they
receive from their neighbors is correct. This is not always
the case, since misconfigurations, bugs in the software of the
routers [11] and malice [12] are common. Third, there have
been very few (public) efforts to automate monitoring and
management of BGP [13] [14]. Finally, the issue of secure and
robust Internet routing is an open problem despite significant
research efforts and studies [15] [16] [17] [18].

How can we automate the management and the safety of the
Internet? This is the general problem we attempt to address.
Within this framework we focus on three major problems in
BGP research and its management: a) the lack of detailed
knowledge and of accurate models for the Internet at the BGP
level, b) the lack of tools to analyze the configuration of an
Autonomous System, and to check whether the registered pol-
icy matches the intended policy, c) the need for an automatic
way to detect abnormal routing behavior. Checking for errors
is a tedious manual process, usually done in a reactive way.

In this paper, we develop a methodology and a tool for
addressing the issues we just described. We call our tool
Nemecis, which stands for NEtwork ManagEment and Con-
fIguration System. Our goal is to provide a framework for



the analysis of RPSL policies, which can be used during
the configuration phase, or the operation phase. During the
configuration phase we can check the registered policy for
correctness. During the operation phase, we can check whether
the intended policy matches the actual routing. This way,
we can reduce the time it takes to discover and fix routing
problems. Most importantly, we can start to monitor how
Internet routing works. In fact, our tool is among the first
public tools to analyze the IRR policies. RIPE, has as a long-
term goal to validate the policies that Autonomous Systems
register, and thus increase the robustness of BGP. Our work
here is the first step in reaching this ambitious goal. Our
contributions can be summarized in the following points:

• We provide Nemecis, an efficient tool to analyze the
IRR/RPSL information. Our tool can be used to parse,
clean and infer the business relations found in the Internet
Routing Registries, and create an easy to query relational
database, where the policies are stored in tables and not
as simple text.

• We validate the accuracy of our model and tool by
comparing the results from IRR with real routing tables.
Our accuracy of inferring correctly the policy is higher
than 83%, which we consider to be very good, if we take
into account the quality of the registered policies.

• We quantify the usefulness of the IRR information: we
find that 28% of the ASes have both a consistent policy
and are consistent with BGP routing tables. Note though
that almost all are from one only registry, RIPE.

• We identify commons mistakes and problems in IRR
registries. We discuss ways to overcome them so that
IRR can be used to automate the management and safety
of the Internet routing.

Our work in perspective. Does it make sense to analyze
IRR when the information is to a large extent inaccurate?
Our answer to this is twofold. First, we reverse the argu-
ment: if we have tools to use IRR effectively, then network
administrators will be motivated to keep IRR accurate and up
to date. In addition, the tool can be used even with locally
correct information: between neighboring ASes. Thus, it does
not require global conformance. Second, we claim that the
robustness and ultimately the security of the Internet will need
global coordination and conformance to timely updates. The
security of an interconnected system is equal to the security
of its weakest component. To achieve such a goal, we need a)
compliance and information, and b) methodologies and tools.
Our work covers the second part, continuing the vision of
IRR [5] for an analyzable and robust Internet.

The rest of this paper is structured as follows. In section II
we present some definitions and background work. In sec-
tion III we describe our framework. In section IV, we analyze
the IRR registries, with a twofold goal, to validate our tool, and
to check the status of the registries. In section V we discuss
how we can use our methodology to automatically detect
misconfigurations. In section VI we present our conclusions.

TABLE I

WHAT DOES AN AS EXPORT TO ITS NEIGHBORS?

Provider Peer Sibling Customer

Provider
√ √

Peer
√ √

Sibling
√ √ √ √

Customer
√ √ √ √

II. BACKGROUND AND PREVIOUS WORK

In this section, we briefly describe an overview of Internet
routing, Internet routing registries and the language used to
describe the routing policy. Additionally, we discuss some of
the previous work that either relate or provide a motivation
for our paper.

A. Internet and BGP-4

Internet is structured into a number of routing domains
that have independent administrations, called Autonomous
Systems (AS). Each autonomous system is identified by a
number, asn, which is assigned to it by an Internet registry.
An Autonomous System uses an intra-domain routing pro-
tocol, like OSPF or IS-IS, inside its domain, and an inter-
domain protocol to exchange routing information with other
Autonomous Systems. The defacto standard for inter-domain
routing is BGP-4 [1]. The primary difference between the
intra-domain and the inter-domain protocol is that the first
one is optimized for performance, solely based on operational
requirements, while the second is used to enforce the policy of
the Autonomous System, which corresponds to the business
relations with its neighboring ASes.

An Autonomous System given its policy, will advertise to
its neighbors a list of IP Prefixes, or routes that are reachable
through it. Each route is tagged with a number of attributes.
The most important attribute is the AS PATH. The AS PATH
is the list of ASes that packets towards that route will traverse.
The Community attribute is a 32 bit number that is usually
used to influence the routing of a provider.

An AS uses filters to describe what it will import from
and export to a neighboring AS. The filter can include a list
of routes, a list of regular expressions on the AS PATH, a
list of communities, or any possible combination of these
three. Filters can have both positive and negative members.
For example we can explicitly reject routes that are either
private [19], or reserved [20].

B. Business Relations

In the literature [21] [22] [23], there exist four basic
types of business relationships among ASes. The Provider
to Customer and Customer to Provider type. The customer
AS buys transit access to the Internet from a provider AS. The
provider advertises either its full routing table, or a default
route to the customer, and accepts from the customer its local
routes and the routes of its customers. Another type is the peer
to peer links in which the ASes exchange their local routes.
This way they don’t need to go through their providers in



order to reach each other or their customers, for economic and
performance reasons. Another type is the sibling to sibling.
An ISP can own more than one AS number. Each can serve
a specific purpose, like represent the backbone network, or a
region, for example Europe. In this case these ASes advertise
to each other all the routes they learn from their neighbors.
In Table I, we have a brief overview of what an AS exports
to its neighbors based on their business relation. The basic
observation from the table is that we can group the relations
into two basic categories. In the first category, we have the
policy towards Providers and Peers where an AS restricts what
it exports. In the second category, we have the Customers
and the Siblings where an AS gives unrestricted access. The
relations we just described, are the typical relations used in
the literature. More complex policies can exist, variations of
the simple policies we described above.

C. Internet Routing Registries

The need for cooperation between Autonomous Systems is
fulfilled today by the Internet Routing Registries (IRR) [6].
ASes use the Routing Policy Specification Language
(RPSL) [7] [8] to describe their routing policy, and router
configuration files can be produced from it. At present, there
exist 55 registries, which form a global database to obtain a
view of the global routing policy. Some of these registries
are regional, like RIPE or APNIC, other registries describe
the policies of an Autonomous System and its customers, for
example, cable and wireless CW or LEVEL3. The main uses
of the IRR registries are to provide an easy way for consistent
configuration of filters, and a mean to facilitate the debugging
of Internet routing problems. Unfortunately, the tools that exist
today for the purpose of verifying the policy [24], are based on
visual inspection of the policies. As we mention earlier, there
does not exist a systematic way to check for consistency of the
registry. Additionally, most of the policy is stored as text in a
database, and there exist a small number of predefined queries
that can be executed, compared to the wealth of information
that is contained in the database.

D. Routing Protocol Specification Language(RPSL)

RPSL is the language used in IRR to specify the routing
policy of an AS. The design goal is twofold. First, RPSL
provides a standard, vendor independent language, so that the
policy of an AS can be published in an easy to understand
format. Second, RPSL provides high level structures for a
more convenient and compact policy specification. RPSL
provides an abstract representation of policy, but still the policy
described is based on filters on routes, on regular expressions
on the AS PATH, and on communities.

There exist 12 different classes of records, that either
describe portion of a policy, or describe who is administering
this policy. In figure 1, we have a simplified definition of the
four more important classes used to describe the policy. The
route class is used to register the IP prefixes or routes an AS
owns and originates. The as-set and route-set classes are high
level structures that can be used to group routes. For example

The route class
route: <IP prefix>
origin: <AS number>
member-of: list of <route-set-names>
mnt-by: list of <mntner-names>

The as-set class
as-set: <object name>
members: list of <AS numbers> or <as-sets names>
mbrs-by-ref: list of <mntner-names>
mnt-by: list of <mntner-names>

The route-set class
route-set: <object name>
members: list of <IP prefixes> or <route-set-names>
mbrs-by-ref: list of <mntner-names>
mnt-by: list of <mntner-names>

The aut-num class
aut-num: <as-number>
as-name: <object name>
import: from <peering> [action <action>]

accept <filter>
export: to <peering> [action <action>]

announce <filter>
default: to <peering> [action <action>]

networks <filter>
mnt-by: list of <mntner-names>

Fig. 1. A simplified version of the main classes of records in RPSL

an AS can create a route-set that will contain the routes of its
customers. Finally, the aut-num class contains the import and
the export policies for every neighbor of the AS. The policies
are expressed in the form of a filter. Note that every class has
a mnt-by attribute that specifies the maintainer of the record.
This is done for security reasons so that only the maintainer
can update that record. There exist additional attributes, not
shown in the figure, like the source attribute that specifies in
which registry the record exists, and the changed attribute that
provides the date that the record was either last updated or
created1. Next, we describe in more details the various ways
that filters can be specified in RPSL.

Filtering based on Routes. The most common way to
describe the policy of an AS is to determine the specific
routes that the AS will import from an AS and export to
that AS. There are many ways to express this in RPSL. First
one can directly use routes, for example ”from AS3 import
{199.237.0.0/16}”. For convenience, RPSL allows routes to
be grouped. One way is to use AS numbers, like ”to AS2
announce AS3”, that means export to AS2 all routes that AS3
registers. RPSL allows also for explicit definitions of groups
called sets. There exist two different types of sets, the as sets,
and the route sets. The first contains other as sets and AS
numbers. The second contains other route sets and routes.

Filtering based on regular expression on the AS PATH.
Another way to express policy is to use the AS PATH attribute
of the advertisements. An example is ”from AS3 import <
ÂS3+ AS5∗$ >”. This regular expression can match paths like
”AS3” and ”AS3 AS5”. The regular expressions are POSIX
compliant, and can include AS numbers, as sets, AS number

1Note that the changed attribute is not updated in an automatic way by
the registry, but is provided by the maintainer of the record. This can lead to
cases where the record is changed but the time is not updated.
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Fig. 2. A simple multihoming example, where AS2 has two providers AS4
and AS5.

sets, unary operators like *, and binary operators. This way of
expressing policy is convenient in the sense that ASes don’t
need to update their filters, if a neighbor AS gets a new route.
But, it allows for misconfigurations errors to travel further to
the core of the network, as for example in the case where an
AS by mistake advertises a route it does not own.

Filtering based on communities. The third way to express
policy is to use communities. Communities can be thought
of as a mechanism to group routes, and treat the group as
one entity. This grouping is often referred to as ”coloring”.
For example, all routes from customers can be colored with
community ’112:10’, and then we export the routes based on
the communities. Interestingly, we find that this is very rare
in IRR, only 21 ASes or 0.2% of all ASes use communities
in their filters, and we will not consider it in our analysis.

Keywords used in the filters. There exist a number of
keywords in RPSL that can be used to describe a policy. There
can be keywords like ’ANY’, that describe any route that the
AS receives. The keyword ’PeerAS’ is often used with sets,
and it facilitates looping over all members of a set. We also
have keywords like ’refine’ and ’except’, which can be used to
describe the policy in a more compact way. We consider these
details to be out of scope of this document. The interested
reader can find more details in the RFC2622 [7].

E. Previous Work

We did not find any effort to analyze IRR in the detailed
fashion we do here. However, several related studies exist.

Chen et al. analyze the IRR in [25]. Their objective is to
discover the AS level topology of the Internet, and so they
are interested in the existence of links between Autonomous
Systems. They use a number of tests to check whether the
records are up to date. They examined the RADB and RIPE
registries and find that the RIPE registry contains more ac-
curate topological information. Note though, that they don’t
analyze the registered policies, which is our focus.

Feldmann and Rexford [26] examine our ability to validate
the correctness of the configuration of routers within an ISP.
They describe a case study of the AT&T IP Backbone and the
problems they face analyzing the configuration files.

Using a high level policy language to produce configurations
can significantly reduce the number of errors. Ratul et al. [11]
find that a significant portion of the instability observed in the
Internet today is due to misconfigurations. They find that 3 out

as-set: AS-5
members: AS5, AS5:AS-CUSTOMERS
mnt-by: AS5-MNT

as-set: AS5:AS-CUSTOMERS
members: AS2,AS3
mnt-by: AS5-MNT

as-set: AS4:AS-CUSTOMERS
members: AS1,AS2
mnt-by: AS4-MNT

route: 199.237.0.0/16
origin: AS5
mnt-by: AS5-MNT

aut-num: AS5
import: from AS6 action pref = 100; accept ANY
import: from AS4 action pref = 90;

accept <ˆAS4+ AS4:AS-CUSTOMERS*$>
import: from AS2 action pref = 80; accept AS2
import: from AS3 action pref = 80; accept AS3
export: to AS6 announce AS-5
export: to AS4 announce AS-5
export: to AS2 announce ANY
export: to AS3 announce ANY
mnt-by: AS5-MNT

Fig. 3. Example of RPSL policy for Autonomous System 5

of 4 new prefix advertisements are the result of misconfigura-
tion. Additionally, between 0.2 and 1.0% of the BGP table
size suffers from misconfiguration daily. Misconfigurations
can occur either by mistake or malice, for example a spammer
can hijack a route temporarily [27].

Griffin et al. [28] describe the need for a new policy
configuration language. They mention that the complexity of
routing policies has grown significantly, and policy interactions
can be very difficult to predict. They discuss the requirements
and the design space for new configuration languages.

III. FRAMEWORK FOR IRR ANALYSIS

We develop a framework to analyze IRR registries. Our
framework is designed to cope with incomplete and incorrect
data, and to be general enough to infer the policy of any
Autonomous System without requiring a specific way of policy
registration. We first present an overview of our framework
and then discuss in details its three main steps.

A. Problem Definition and Overview

The following problem lies in the heart of our effort.
Problem: Given an AS A, its neighbors peers, and the RPSL

records that describe the policy of A and the policy of its peers
infer the business relations of A 2.

In order to infer the business relations correctly, we have to
solve two sub-problems:

• We need to convert the policies using filters to an
equivalent link-level policy. In the link-level equivalent
policy, we replace the export and import filters, with a
boolean matrix that describes the relation between the

2Note that in the definition we require that we know the policy of its
neighbors in order to find the business relations. Even though in most of the
cases we can check the policy for correctness in isolation, we can find the
business relations more accurately if we know the policy of its peers.
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Fig. 4. Import/Export based on the business relationships.

Route
Attributes

-Route_ID:   int

-Route:         cidr

-Origin:         int

-Changed:     date

-Source:        string

Policy_Hier

Attributes

-Policy_ID:      int

-Name:             string

-Name_ID:       int

-Is_from_path: boolean

-Sign:               boolean

-Policy_ID:          int

-Aut_Num_ID:    int

-Aut_Num            int

-Is_import :          boolean

-Type:                   int

-Link_2:               int

-Pref                     int

-Community_ID   int

Attributes

AS_Policy

Set_Members

-Root_ID:     int

-Name:         string

-Name_ID:   int

-Parent_ID:  int

-Level:          int

-Is_leaf:        boolean

Attributes

Aut_Num

Attributes

-Aut_Num_ID:    int

-Aut_Num:          int

-AS_Name:         string

-Changed:            date

-Source:               string

AS_Set

Attributes

-AS_Set_ID:    int

-AS_Set:          string

-Changed:        date

-Source:           string

Fig. 5. Part of the schema we use to analyze the policy.

links for an AS. For example, if we import a route from
link i, and export that route to link j, then the value of
the matrix at (i, j) will be true. In figure 4, we provide a
visualization to better understand the link-level approach.
For our basic types, we show that the actual policy is to
import something from a link and forward it to another
link. By converting the problem to the link level, the
problem becomes independent of the different kinds of
implementations of the policy, or about specific routes
or sets we export. This way we concentrate on how to
model the actual policy.

• The second sub-problem is to infer the business policies
using the link-level model. This sub-problem is indepen-
dent of the first one. For example, we can enrich the
business relations to include more types of relations that
we don’t consider now, such as backup links, without
changing the link-level approach.

Throughout this section, we will use the simple scenario shown
in figures 2 and 3 to illustrate the problems we face. The
interesting part of this particular setup is that AS2 has two
providers, AS4 and AS5.

AS4:AS-CUSTOMERS

AS1 AS2

AS-5

AS5

Fig. 6. The directed tree representation for the as set AS-5.

B. Step One: Building the database

The purpose of the first phase is to parse the RPSL defi-
nitions, and populate the tables in the database. In figure 5,
we have part of the schema that we use to store the policies.
For example, for the table AS Policy the values that we store
for every row are the AS number in the aut num attribute,
the unique id that we give to this AS in Aut Num ID3, the id
of the filters in policy id, which references table Policy Hier.
The import filters can be identified by Is import==’True’ and
we also keep the neighbor AS in Link 2. This table and the
Policy Hier table are the main tables used to store part of the
policy of an AS. With the exception of the aut num record, it
is straight forward to load the data in the database. For every
class of records, RPSL specifies a number of mandatory and
optional attributes similar to a SQL table. For these cases, we
create the tables with the same attributes and load the data.

We develop a uniform way to analyze filters, which is a
critical part of inferring the policy.

Converting as path filters to route-based filters: Analyz-
ing filters is easy if the filter is a simple string like ”AS1
AS2 AS3”. However, it can be challenging if the filter is a
regular expression like < ÂS3+ AS5∗$ >”. In our approach,
we analyze the regular expression on the AS PATH, and we
find all the paths that can be accepted. The last asn or as set
in these paths will be used to describe the filter. This way
we have an equivalent, but more strict, route-based filter for
every path-based filter. In table Policy Hier, we have a boolean
attribute, Is from Path, which can be used to identify these
cases.

Converting sets to directed trees: The definition of sets
in section II allows a set to specify another set as its member.
Sets, either as sets or route sets, can therefore be modeled as
a directed graph GS = (V,ES). A directed edge e = (u, v) ∈
ES exists, if and only if, v is a member of the set u. For
a more simple format, we convert the sets to directed trees.
From the graph GS , we compute for every node Q ∈ V , a
directed tree TS(Q) = (VT , ET )4.

In figure 6, we have an example of a directed tree. The
directed tree is for the as set AS-5, its RPSL records are in
figure 3. Note that the non-hierarchical objects like route and

3We can have more than one aut num record for an AS, but only one per
registry. In our analysis we use the more recent one.

4The graph can contain cyclic paths, that is, there can exist sets that
are members of each other. We use a strongly connected components al-
gorithm [29] to identify these cases and compute the members of the tree.



asn will also be modeled as directed trees, where there exists
only the root of the tree. Using this methodology we populate
the Set Members table.

For the rest of the section we will use the following
definitions. We use the term object to refer to the directed
trees used in the filters. Given an AS A, we use the notation
Import From(B) =

⋃
objecti to describe the set of objects

that the AS is importing5 from a neighboring AS B. Similarly,
Export To(B) is the set of objects that AS A exports to AS
B.

C. Step Two: Find Link Level Equivalent Policy

In this step, we want to find the relationships between ASes
and to do that we analyze the import-export behavior at the
level of a link. We will say that an AS A exports a link i
to a link j, if A exports to link j whatever it imports from
link i. We want to find this relationship between every pair of
links of an AS, for every AS.

More formally, we define the LinkLevel matrix as a NxN
boolean matrix, which captures the relations between imports
and exports, where N is the number of neighbors of the AS.

Problem: Given an AS A, and its Import From
and Export To sets, compute the boolean matrix
LinkLevel[i, j], such that LinkLevel[i, j] is true, if
and only if Export To[j] ⊇ Import From[i].

We describe our method at a high level of abstraction. First,
we select each AS and analyze the relationships between its
links. We examine each object the AS exports.We find whether
the object is imported or constructed by the AS. This way, we
find the origin of each exported object. Finally, we find which
links are exported to each link.

We present our approach in some more detail to show
some interesting challenges. We will start by providing the
pseudocode of the procedure that matches the import with the
export objects.
. Procedure MatchImportExport()
. for every AS A in the database
. for every neighbor, B, of A
. for every object X that A exports to B
. procedure FindOrigin(X)

The procedure FindOrigin() finds whether X is imported
and from which links. Algorithmically, the procedure can be
described as follows.
. Procedure FindOrigin(X)
. for every neighbor C of A
. for every object Y that A imports from C
. procedure compare(X,Y)

The procedure compare(X,Y) will identify whether object X
is the same as object Y. If it is, we consider that this neighbor
could be the origin of object X.

5Special care should be given to the case that we have the keyword ’ANY’
as an import filter. There exist cases that an AS exports an object without
explicitly registering it in any import filter, but the object is implicitly included
from an import ’ANY’ rule. To solve this problem, we find for every import
’ANY’ rule whether the other AS registers the reverse direction of the link.
If it does and uses an object other than the keyword ’ANY’, we add it to the
Import From set.

The above procedure hides several subtleties. We highlight
the most important ones here.

1) The object X may be a set. In such a case, we want
to examine each member of X and identify where each
member is imported from. Each member of X can be
a set as well, so this procedure continues recursively.
However, we only need to examine these recursive
definitions only up to a point. Namely, when examining
a particular AS, we only refine its sets to components
that are “visible” to that AS.

2) An object X may be imported from several neighbors.
We would like to disambiguate such cases.

Let us provide some more explanation and our solutions to
these issues.

Definition of Set Construction: The sets an AS uses can
have two origins, they can be: a) defined by the same AS, and
b) imported from another AS. When an AS defines a set we
say that it constructs it. We make the reasonable assumption
that every set is constructed by one AS.

For example, consider the scenario in figures 2 and 3.
AS5 constructs6 the as-set AS5:AS-CUSTOMERS to describe
its customers, which includes its neighbors AS2 and AS3.
Similarly, AS4 constructs AS4:AS-CUSTOMERS. AS5 imports
AS4:AS-CUSTOMERS from AS4, and therefore can use it, i.e.,
export it. Note that AS4:AS-CUSTOMERS contains AS2 and
AS5 imports AS2 directly. In some sense, AS5 appears to
import AS2 twice, one directly and one indirectly through
AS4.

Let us elaborate more on the previous example to motivate
on our subsequent work. Consider that AS5 exports AS2 to
AS6. When our algorithm will examine AS5, it will examine
the origin of AS2 that AS5 exports. The algorithm will find
that AS2 can be imported from two sources, as we mention
above. This can have undesirable effects. To illustrate this, we
change the original scenario in figures 2 and 3 and we remove
AS2 as a customer of AS5. This means that AS5 does not
export AS2 to AS6, since AS2 is not a member of AS5:AS-
CUSTOMERS. Additionally, there are no import and export
rules for AS2. The next step is to consider that AS2 becomes
a customer of AS5. Consider that AS5 updates the AS5:AS-
CUSTOMERS object to include the new customer, but neglects
to update its aut num record. When our algorithm will examine
AS5, it will examine the origin of AS2 that AS5 exports.
The algorithm will find that AS2 can be imported through
AS4. In this case, we will consider the policy of AS5 to be
correct, while it is clear that it is not, since the aut num record
misses the import and export rules for AS2. Next, consider the
same scenario with medium to large ISPs that have a large
number of connections and multiple paths for every AS. How
can we check for the correctness of their policy when they
import objects that can contain thousands ASes? We provide
a systematic methodology to do this below.

6To be precise, the maintainer of the AS5 will define the set AS5:AS-
CUSTOMERS.
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AS1 AS2

Fig. 7. Set construction example. In the left side we have the directed AS-
visible tree as seen in AS5 and in right as the AS4 sees it.

Definition of directed AS-visible tree: To accurately com-
pute the link-level model, we need to restrict the depth in
which we analyze an object. Intuitively, when examining
an AS, we want to analyze the objects involved only for
the members that the AS constructs or imports directly. We
introduce the notion of directed AS-visible tree. For an object
Q, its directed tree TS(Q) = (VT , ET ), and an AS A, we
define the directed AS-visible tree TRT (Q,A) = (VRT , ERT ),
as a new tree which has the following properties: a) VS ⊇ VRT

and ES ⊇ ERT , and b) an edge e = (u, v) ∈ ERT exists if and
only if, AS A constructs u. We find the new tree by starting
from the root of the tree and going one level deeper, if the AS
constructs the current node.

The basic idea is that in analyzing the policy of an AS
A, the detail we want for a set Q depends on the AS A
that uses it in its filters. The following example will illustrate
our approach and is based in the scenario in figures 2 and
3. In figure 7, we show how AS5 and AS4 ”see” object
AS4:AS-CUSTOMERS, i.e., TRT (AS4:AS-CUSTOMERS, AS5)
and TRT (AS4:AS-CUSTOMERS, AS4). AS5 imports AS4:AS-
CUSTOMERS, so its members are not ”visible”. This way,
when it tries to match the import with the export objects, it
won’t find that it can also reach AS2 through AS4.

Full link constraint: So far, we have introduced a method-
ology to process the objects in isolation. We also need to
consider the cases that an AS exports more than one object
to a link. In this case, we use the following rule: We say that
an AS A exports link i to link j, if and only if all objects in
Import From[i] are in Exported To[j].

Let’s assume that AS5 declares its policy to AS4 in the
following way:
import: from AS4 action pref = 90; accept AS4 AS1 AS2

The FindOrigin() procedure should not find that AS2 is
imported through AS4. If we do, we will have the same
problems that we described earlier.

Refinement through multiple executions. If the IRR con-
tained perfect policy definitions, we could easily find for every
object the AS that constructs it. Additionaly, we would only
need to run the MatchImportExport() procedure once, and we
would find the LinkLevel matrix. In practice, identifying the
constructor AS is far from trivial, and sometimes we need to
consider more than one candidates in order to find which AS
constructs the object. To overcome this, we follow a trial and
error approach. We make a guess for the constructor. Apply
MatchImportExport() once, and examine the results. This can

lead us to execute MatchImportExport() once more to identify
the constructors. Having the constructors with some degree of
confidence we execute MatchImportExport() to find the link-
level equivalent policy. Clearly, there are a lot of details that
we simply cannot explain in the limited space.

The algorithm that we use to compute the LinkLevel matrix
is the following.
. Algorithm for finding Link-Level Equivalent Policy
. A. Identify Candidates ASes for construction
. B. MatchImportExport()
. C. Examine legitimacy of Candidates
. D. Goto step B and repeat one time
. E. MatchImportExport()

We explain each process by referencing to it by letter.
Note that MatchImportExport() has already been discussed.
A. Initial step on finding candidates for set construction:

1) For every object X find all the ASes A such that
maintainer{X} == maintainer{A}. These ASes are
possible candidates for construction for the object X .

2) For every remaining object, we try to guess its con-
structor. For every AS A, we have a counter that counts
how many times other ASes have imported this object
from A. We choose the AS that has at least 10 times
more counts than the other candidates. For the rest of the
objects, we just use all the ASes as possible candidates.

C. Examine legitimacy of Candidates. The result of the
MatchImportExport() procedure depends heavily on how we
identify the AS that constructs an object. In this step, we
evaluate the original selection. We have two cases, in the first
the object has one candidate only, in the second it has more
than one.

In the first case, we check the number of members of the
object that we can match in the policy of the candidate AS. If
we can find all the members, then we consider the selection
correct. Additionally, if we miss only one member of the
object, but we know at least three, we consider the selection
correct. For the rest of the objects, we use the approach of step
two of procedure A to find one or more additional candidates.
We use both the original and the new candidates, and we re-
run the MatchImportExport() for these sets.

In the second case, we pick the candidate with the largest
number of matched members in its policy. This AS will be
the only one that constructs the object.

It is worth mentioning an interesting property of LinkLevel
matrix. LinkLevel must be symmetric: LinkLevel must be
equal to LinkLevelT . This is true for the business relations
we have defined. For example, if we advertise a customer to
a provider, it makes no sense not to advertise the provider
to the customer. This property provides a sanity check: if the
Customers/Siblings of an AS are correct, then the symmetry
must hold.

D. Step Three: Finding Business Relations

In this step, we want to infer from the link-level policies
the business relations. Business relations can be grouped by
the export filters, as we mentioned in section II. In the first



TABLE II

BUSINESS RELATION BASED ON THE EXPORT CATEGORIES

Business Relation First AS Second AS

Provider −→ Customer A B

Customer −→ Provider B A

Peer −→ Peer A A

Sibling −→ Sibling B B

category, we have the providers and peers, we will call it
category A, where we export only the local routes and the
routes of the customers. In the second case, category B, we
have the siblings and customers, where we export everything
from all the neighbors. If we assume that all the Autonomous
Systems register their policy, we can find the business relation
by comparing the category we have with the category of the
neighboring AS, as shown in Table II. For example when an
AS gives full access to all links, while in the reverse direction
the other AS gives restricted access, the link is of type Provider
to Customer.

In some cases, we can’t find the export policy of the
neighbor AS. We need to rely on the policy of one AS only.
The idea we use is that if an AS imports ANY from its
neighbor, we will have category B, else it will be category A.
We can improve the inference if we can identify one of our
Providers. We can do this safely if there exist a default ’ANY’
rule in the policy of the AS. If there exists an export rule for
this link, we know that the links associated with the objects in
the filter are either customers or siblings. The remaining links
will be either provider or peers.

Limitations of looking only at one AS’s policy. The reason
that we use the export filters is that we can not always infer the
policy of an Autonomous System by just considering its own
policy registration. For example, we can have a default free
customer to provider relation. In this case, the AS imports
from its provider a set. This case has no difference than a
typical peer to peer relation, from the point of view of the
local AS. Another example is when an AS doesn’t filter what
it import from a peer. In this case, the AS will use the filter
’ANY’, it will accept anything the other AS sends. The result
is that we will consider the neighbor AS as a provider instead
of a peer.

The only possible way to correctly infer the business
relations using only the local AS, is to check the preference
that the local AS gives to the filters per link. The order of
preference should be customers, peers and then providers.
This mean that an AS will always prefer first the path to the
customers, then the peers and last the providers. Unfortunately,
this is not always true, we can find a lot of cases where either
we have the same preference for all the links, or we have the
reverse preference, and currently we don’t use it.

IV. TOOL AND FRAMEWORK VALIDATION

To evaluate the performance of our framework, we use the
IRR registries of June 22, 2003. There exist 55 registries,
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Fig. 9. The number of nodes versus depth for the route sets.

which are mirrored by RADB [30]. Our tool extracts the infor-
mation stored in these registries. We validate the information
we extracted with Internet routing tables we collected at the
same day from Routeviews [31].

Our tool Nemecis, takes as an input a number of Internet
Routing Registries, and returns a complete database, where
the policies are stored in tables, so that queries can be asked
on the policy. Additionally, it returns a list of all errors
found during the processing of the registries. Finally, our tool
infers the business relations of the Autonomous Systems. We
implemented our tool using python and postgresql SQL.

The goal of this section is twofold. First, we want to show
that our tool can be used to check the consistency of the
registries, detect and discard errors, and that we can extract
correct information. Second, we show that the IRR registries,
especially the RIPE registry, contain some useful information,
but there is a need for processing and cleaning.

A. Building the database

In phase one, we parse and unify all the 55 IRR registries,
in a single database. We process every record that can be used
in a policy. In total, we have 10, 841 Autonomous Systems,
211, 528 routes, 4, 923 as-sets, and 1, 134 route-sets. The
problems in this phase, range in complexity. Some of the
problems we faced are the following. First, we have simple
problems like routes that are not valid IP Prefixes, dates that
either don’t follow the correct format or don’t exist in the
calendar, and more serious, like objects that are referenced in
the policy but are never registered. For example, there exist
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1, 032 as-sets that are referenced, but don’t exist in any of the
registries7. Additionally, if the objects don’t exist in the local
registry, we can sometimes find multiple object definitions in
other registries. Another problem exists with the incorrect use
of sets to describe the neighbors of an AS. Sometimes ASes,
instead of creating a separate as-set to describe their neighbors,
they use the set that describes what they import from these
neighbors. This way we have an artificially large number of
neighbors. We find and correct these cases.

After we build the database, the first thing we need to check
is whether the ASes maintain the hierarchy of the sets. For
example, consider the case that an AS constructs a set, which
includes its customers and its local AS. If the provider of
that AS includes the set in its own customer related set, then
it maintains the hierarchy. If on the other hand it uses the
members of the original set, and not the actual set, then that
AS breaks the hierarchy. Our ability to analyze the policy is
minimized when ASes don’t maintain the hierarchy, especially
for medium to large ASes. Intuitively, the number of nodes in
the tree, versus the depth of the tree will give us an indication
whether the ASes maintain the hierarchy. Recall that we model
the sets using trees. In figure 8, we plot this graph for the
as sets and in 9 for the route sets. From these figures, we
observe that most of the as sets seem to maintain the hierarchy,
something that is not that evident in the route set case.

The biggest flat as set is the AS-Sprint-Origins, registered
in the level3 registry, that has 7, 310 ASes. The overall largest
as set is the AS-SeabonePeerEU with a depth of 16 and an
incredible large number of members, 96, 166. The set contains
10, 053 unique ASes. For the route sets, the biggest one is the
RS-Level3-AS3356-Transit, which has 68, 538 IP prefixes, and
depth equal to 1. It is worth noting that the biggest flat sets for
both the as set and the route set, are related with the Level3
ISP.

B. Phase Two: Inferring Policy

The next phase is to analyze the policy, and try to infer
the actual business relations among the Autonomous Systems.

7Some of the sets missing are clearly simple spelling mistakes that the
network administrator made. It seems that a large number of networks use
the RPSL language only for registering a simplified version of their policy,
and not for the actual configuration of their routers.
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Fig. 12. CDF of the time difference between the last update time of an
Autonomous System and the set it uses.

As we showed in the previous section, this is far from trivial.
Different ASes have different uses of the IRR registries. Some
ASes register very detailed policy, probably the one they use
to configure their routers, other register a simplified policy, so
that there exists a record in the IRR. Additionally, some ASes
register only their customers, while others only their peers
and providers. Finally, ASes don’t always have their policy in
a consistent state, their sets might be updated, but not their
aut-num objects and vice versa.

Link-Level Transformation: Using our tool, we find that for
90% of the ASes, we can convert their policy to an equivalent
link-level policy with no errors, i.e., for all export objects we
can find an import object. In figure 10, we plot the degree of
the Autonomous Systems in decreasing order, which have no
errors, this corresponds to the ’perfect’ line. We do the same
for the Autonomous Systems that have errors, the ’errors’ line.
We observe that the higher the degree the more difficult it is
to do the conversion. The largest AS that we can fully convert
has 297 neighbors. In figure 11, we plot the number of missing
objects versus the total number of objects in the policy. As we
can see, there exist wide variations among the Autonomous
Systems that can not be fully converted. On the positive side,
there exist a number of medium to large Autonomous Systems
that only miss a small number of objects.

Why we can not convert all the ASes? There can be
three possible causes to this problem. First, the policy as



TABLE III

QUALITATIVE DIFFERENCE BETWEEN IRR AND ROUTEVIEWS

All Links Common Links

Policy IRR Gao IRR Gao

Provider→Customer 21.3% 45.6% 33.3% 39.7%

Customer→Provider 21.2% 45.6% 42.7% 48.4%

Peer→Peer 56.3% 7.6% 22.3% 10.6%

Sibling→Sibling 1.1% 1% 1.6% 1.1%

Total Links 127, 498 71, 080 21, 492 21, 492

registered might contain errors, such as not registering all
the neighbors. Second, the policy can be more complex than
the one our model tries to capture. Third, we have the case
of policy inconsistency. For example, a set is updated more
frequently than the Autonomous System that uses it. In order
to further understand the reason, we will try to analyze the
time difference between the Autonomous System and the sets
it uses. In figure 12, we plot the CDF of the time difference
between the Autonomous System and the sets it uses, for all
the sets that we have errors. To determine the date the set
was last updated, we find the last update of any of the sets
that are included in the set, and the AS constructs them. For
approximately 50% of the errors, we find that the difference
is more than 2 months. This result makes us confident, that
the reason we fail to convert to the link level policy is that the
policy is not consistent.

Policy must be symmetric: We find that 650 more ASes fail
on this test. In total, 82.8% of the ASes pass the first two tests.
The major reason for asymmetry is the gap between the time
the set and the AS was last updated. For example, consider
the case where an AS changed providers, and the old provider
changed only its set and not the Autonomous System policy.
We can convert the policy to the link level with no errors, but
the result is not correct, since the policy will be asymmetric.
For example, the old provider will export its providers and
peers to the customer, but the set it exports to the peers and
providers will not contain the set of the customer AS, and so
the policy on the link level will be asymmetric.

Inferring business relations: Based on the link level policy,
we can find the business relations as described in the previous
section. In Table III, we have a brief overview of our results.
The all links column for the IRR, is when we take all the links
that are registered in IRR, while the all links column for the
Gao is all the links found in Routeviews and inferred their type
using Gao’s algorithm [21]. There exists both a quantitative
and qualitative difference between these two datasets, at least
as we have computed them. We find significantly more peer
to peer links, compared to the Routeviews dataset.

C. Validation of IRR and our tool

In this phase, we try to assess the correctness of our tool,
and the quality of information that exists in IRR. Using the
database, we can build a network model at the BGP level. The
model has all the necessary information to compare the IRR
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Fig. 13. Rank of the number of links per AS where either all links have the
same type, or some have different.

policies against actual BGP routing. We can check for origin
misconfigurations by comparing the Autonomous System that
originates the route in BGP against the registered origin in
IRR. We consider a route announcement to be valid, if either
the origin in both BGP and IRR is the same, or there exist a
direct link between them and the type of relation is provider
to customer or customer to provider. In order to catch export
misconfigurations, i.e., BGP paths that contradict the intended
policy, we will use the notion of the valley free paths [21].
We consider the provider to customer link to be down hill, the
customer to provider link to be uphill, and the peers to be on
the same level. For example, we can not have a path that goes
from a provider to customer link to a peer to peer link. This
path is not valley free.

Route Origin verification. There exist 135, 398 unique
routes in the Routeviews routing table. For 80% of them,
we can find a corresponding record in IRR that can be used
to verify the origin of the route. More specifically, 57% of
the routes have a corresponding route in IRR with the same
origin. For 23% of the routes, we have a less specific route,
that contains the route found in BGP, and either has the same
origin, or it is registered by a direct neighbor of the AS, which
most of the times has a provider to customer type of relation.
For 12% of the routes, there does not exist any route that can
be used to compare the origin in IRR versus the origin found
in BGP. An additional 8%, has a corresponding less specific
route, but the origin can not be verified.

Links missing from IRR: We check whether all links in
Routeviews can be found in IRR also. We find that only 38%
of the ASes pass this additional test. As we mentioned, this
can happen either because these ASes don’t register all links,
or because their Autonomous System policy is not fresh.

Business Relation verification: In order to evaluate our in-
ference algorithm, we use the inference algorithm of Gao [21]
on the Routeviews BGP table. Note that Gao’s algorithm is
a heuristic and may not always produce correct results. Its
accuracy is reported around 96%.

There exist 21, 492 common links in IRR and in Route-
views. We find that for 83% of the links, the type in our
and Gao’s approach is the same. Additionally, for 76% of the
Autonomous Systems, all common links have the same type.
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We should mention, that for an extra 10% of the links, we
don’t have a conflict in the actual paths in Routeviews, in the
sense that these links don’t cause a path to have a valley. We
can consider that at least some of them are correct.

We want to examine where the two approaches differ. In
figure 13, we plot the degrees in decreasing order, for the
case where all common links have the same type as in Gao’s,
the ’all same’ line. Additionally, in the ’some different’ line,
we have the degrees of the Autonomous Systems that only
some of the links have the same type. Clearly, from the figure
we can see that the bigger the ASes the less probable it is to
have all the links with the same type. We have tried the case
where we only pick ASes that have all links present and have
correct policy, with a better accuracy, but in that case we have
a limited number of links to compare.

In figure 14, we plot for each AS the number of links with a
different type in our and in Gao’s approach versus the number
of links with the same type. There might be two reasons
for the difference between our algorithm and that of Gao’s.
The first reason is that either our tool, or Gao’s algorithm
fail to correctly infer the type. The second is that the policy
as registered is not correct. Studying the registered policies
manually, we saw that often the fault is on how the policy is
registered. The registered policy does not fully describe the
actual accuracy of the IRR business relation.

Comparison of the registries: In figure 15, we plot the
number of Autonomous Systems per registry that pass a given
number of tests for correctness. The first box corresponds to
the number of ASes registering their policy, the next box is
the number of Autonomous Systems that pass all the policy
tests, i.e., they can be fully converted to the link level and their
policy is symmetric. In the last box we apply the additional
test of comparing IRR with BGP routing. In order for an
Autonomous System to pass this test it must first pass the
policy tests, then register all the links found in Routeviews,
and additionally, all links must have the same type of business
relations. We see that RIPE is by far the most accurate registry,
something that reinforces our belief that the difference in the
inferred business relations is due to poor registered policy.
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V. DISCUSSION: BGP ROBUSTNESS

Our tool is the interface between the IRR/RPSL language
at the configuration plane, and the Internet routing paths at
the operational plane. So far, we use our tool to process
and validate IRR. Our tool discards inconclusive or erroneous
information (first use of the tool). The question that arises
is whether we can ever have an accurate IRR. This can
happen either by compliance, or it can happen locally in an
incremental way as neighbors collaborate and conform with
mutual exchange of information.

In either of the three cases, starting from an accurate
database, we can reverse the process, and we can validate
routing updates using IRR. This can be used as an auxiliary
consulting tool to raise flags, when something unusual appears.
We consider this to be really important, since routing updates
involve large amount of data, and it is impossible to manually
check for errors. We have already developed the additional
functionality. We have applied it to the updates collected
from the Amsterdam Internet Exchange(AMS-IX) [32], and
the results looks very promising. A tool that would check
routing updates will receive the actual updates from a BGP
speaking router. The processing will be done offline, in this
case we can not prevent the errors, but we can identify them
quickly and notify the administrator.

RIPE has developed a prototype, myAS [14], for exactly
this purpose. It allows administrators to manually register the
routes they want to safeguard, and the upstream providers of
an AS. Our tool supersedes this current prototype, since we
can use the actual RPSL policy of an AS. We believe that
a tool that would automatically check for abnormal routing
behavior, for all the policies stored in the registry, is something
that would greatly improve routing robustness in the Internet.
First, it would be an extra motive for AS administrators to use
RPSL and the corresponding tools to configure their routers.
This would result in fewer misconfigurations, since the manual
configuration process, is much more error prone. Second, it
would allow for misconfigurations to be quickly identified.



VI. CONCLUSIONS

We develop a methodology and tool for interfacing and
cross-comparing the two major sources of BGP policy infor-
mation: IRR at the configuration plane and BGP routing tables
at the operation plane. On the one hand, the RPSL language
is complex and obscure, while the BGP information is the end
result of the policy and thus needs to be reverse engineered.
Our tool bridges the gap between the two planes by providing
novel capabilities.

As a proof of concept, we use our tool to obtain the
following results.

• We quantify the quality of the current Internet Routing
Registries. We find that 28% of the ASes have both a
consistent policy and are consistent with BGP routing
tables. Note though that almost all are from one only
registry RIPE.

• We identify commons mistakes and problems in IRR
registries. We discuss ways to overcome them so that
IRR can be used to automate the management and safety
of the Internet routing.

Through this analysis, we get strong evidence of the effec-
tiveness of our methodology and tool. The 83% of the inferred
policy is validated with external sources of information. The
accuracy of our tool is surprisingly high considering that it
has to detect and discard erroneous information.

Our ambition is to establish our tool as a foundation and
inspiration for two complementary goals. First, we would like
to draw the interest of the experts to develop efficient RPSL-
based tools. Second, we would like to motivate practitioners
and the related authorities to maintain and use more the IRRs.
We think that one of the ways to succeed this is by establishing
the practical potential of IRR. We view our tool to be a
promising first step in this direction.
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