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Fig. 1. Left: Rigid balls of varying densities are dropped into a pool of water, achieving correct buoyancy. Center: A thin, elastic balloon is stressed and filled by
a fast stream of water. Right: Pressure applied to a small piston of a hydraulic press is transmitted undiminished to a large piston through a fully enclosed and
incompressible medium.

We present a novel extended partitioned method for two-way solid-fluid
coupling, where the fluid and solid solvers are treated as black boxes with
limited exposed interfaces, facilitating modularity and code reusability. Our
method achieves improved stability and extended range of applicability
over standard partitioned approaches through three techniques. First, we
couple the black-box solvers through a small, reduced-order monolithic
system, which is constructed on the fly from input/output pairs generated
by the solid and fluid solvers. Second, we use a conservative, impulse-based
interaction term to couple the solid and fluid rather than typical pressure-
based forces. We show that both of these techniques significantly improve
stability and reduce the number of iterations needed for convergence. Finally,
we propose a novel boundary pressure projection method that allows for the
partitioned simulation of a fully enclosed fluid coupled to a dynamic solid, a
scenario that has been problematic for partitioned methods. We demonstrate
the benefits of our extended partitioned method by coupling Eulerian fluid
solvers for smoke and water to Lagrangian solid solvers for volumetric and
thin deformable and rigid objects in a variety of challenging scenarios. We
further demonstrate our method by coupling a Lagrangian SPH fluid solver
to a rigid body solver.
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1 INTRODUCTION
Physically-based simulation of coupled fluids and solids has been an
area of active research in recent years, both in computer graphics
and computational physics, and many solution approaches have
been investigated [Hou et al. 2012]. The techniques generally fall
into two categories, monolithic and partitioned approaches. Inmono-
lithic approaches, equations for the solid and fluid are combined into
one system and solved simultaneously, implicitly coupling internal
solid and fluid forces to the interaction forces between them. On the
other hand, partitioned approaches employ separate solvers for the
solid and fluid and interleave calls to each solver to achieve either a
weak coupling, or if iterated to convergence, a strong coupling of
the solvers.

Both the monolithic and partitioned approaches have advantages
and disadvantages in the simulation of two-way solid-fluid coupling.
Monolithic approaches have the advantage of better stability, as stiff
coupling terms can be resolved simultaneously with other forces
in the system, but they also incur significant cost in terms of de-
velopment and do not fully leverage existing codes. On the other
hand, partitioned approaches have the advantage of being able to
reuse previously developed fluid and solid solvers in a black-box
fashion as long as they expose appropriate interfaces. However, they
suffer from poorer stability properties, and in challenging scenarios,
they may require many iterations per time step or worse, fail to
converge [Banks et al. 2014]. When strong coupling is desired, a
large number of iterations may be required for convergence, nega-
tively impacting performance. Despite their drawbacks, partitioned
approaches remain an important class of methods due to the ap-
peal of reusing existing software, and recent work on partitioned
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approaches is aimed at improving their stability properties [Banks
et al. 2014; Degroote et al. 2010; Haelterman et al. 2016]. We believe
that with increasing variety of specialized solvers for fluids and
solids, techniques for coupling disparate solvers without significant
code rewriting are desirable.
In this work, we present a novel extended partitioned method

(XPM) for two-way solid-fluid coupling of incompressible fluids to
rigid and deformable solids and shells. While this approach does
not outperform monolithic methods, which are generally more ef-
ficient, it does mitigate several drawbacks of partitioned schemes.
Our approach builds on a framework first proposed in [Gerbeau
and Vidrascu 2003] and [Vierendeels 2006; Vierendeels et al. 2007],
which seeks strongly coupled solutions through a partitioned solve.
Rather than simple interleaved calls to the fluid and solid solvers,
potentially with underrelaxation, a monolithic reduced-order model
of the system is used as a intermediate layer to generate improved
boundary conditions for the individual fluid and solid solvers, thus
accelerating convergence and improving stability. Whereas [Ger-
beau and Vidrascu 2003] used a reduced model based on a simplified
physical problem, [Vierendeels et al. 2007] constructs reduced mod-
els on the fly by computing local least-squares estimates of the
solver Jacobians. In this paper, we follow the basic framework intro-
duced in [Vierendeels 2006; Vierendeels et al. 2007] for deformable
bodies, extending it to free surfaces, thin shells, and rigid bodies.
Furthermore, we propose the use of a conservative, impulse-based
interaction term, first developed in the context of the monolithic ap-
proach [Robinson-Mosher et al. 2008], instead of the pressure-based
forces typically used in partitioned approaches. Finally, we propose
a novel solution to the partitioned simulation of incompressible fluid
regions fully enclosed by a dynamic solid, a scenario that has previ-
ously been problematic [Küttler et al. 2006]. We demonstrate that
these novel contributions give stability and performance benefits
over more standard partitioned approaches and extend the scope of
scenarios that can be effectively solved in a partitioned fashion.
In summary, our partitioned method for two-way coupling of

incompressible fluids to solids includes the following novel contri-
butions:

• Extending the reduced-model interface approach of [Vieren-
deels et al. 2007] to free surfaces, thin shells, and rigid bodies,
demonstrating the benefits of this general approach on a
variety of solid-fluid coupling scenarios.

• Proposing the use of a conservative, impulse-based interac-
tion term rather than the standard pressure-based forces typ-
ically used in partitioned approaches, resulting in improved
stability and accelerated convergence.

• Proposing a novel boundary pressure projection method for
solving incompressible fluid regions fully enclosed by dy-
namic solids, that is significantly simpler than previous ap-
proaches, extending the range of scenarios that can be simu-
lated using a partitioned scheme.

2 RELATED WORK
Computer graphics researchers have developed a variety of ap-
proaches to coupling Eulerian fluids with deformable and rigid
Lagrangian solids. Monolithic approaches include a nonsymmetric

linear system to capture the two-way interactions between fluids
and deformable solids [Chentanez et al. 2006], a symmetric system
capturing the interaction of smoke and rigid bodies [Klingner et al.
2006], a variational formulation based on kinetic energy minimiza-
tion for coupling fluids to rigid bodies [Batty et al. 2007], a symmet-
ric, momentum-conserving method for coupling fluids to volumetric
and thin deformable and rigid bodies [Robinson-Mosher et al. 2008],
a positive-definite formulation of that system [Robinson-Mosher
et al. 2011], two-way coupling of fluids to reduced deformable bodies
[Lu et al. 2016], and a cut-cell method which implicitly couples fluid
pressure with solid elasticity and damping [Zarifi and Batty 2017].
Implicit coupling of solids and fluids was also achieved through a
fully Eulerian treatment of both [Teng et al. 2016].

Partitioned approaches have also received considerable attention
[Degroote 2013; Hou et al. 2012]. One common method is that the
solid solver provides velocity boundary conditions to the fluid solver,
and the fluid solver provides pressure-based forces to the solid solver
(also referred to as a Dirichlet-Neumann decomposition). Separate
calls to the fluid and solid solvers are interleaved, treating each
as a black box, to achieve either a weak coupling, or if iterated
to convergence, a strong coupling of the solvers. A partitioned
approach to coupling fluid and rigid bodies was proposed in [Carlson
et al. 2004], where additional forces are applied to the fluid velocity to
enforce a rigid motion. In [Guendelman et al. 2005], thin deformable
and rigid shells were weakly coupled to smoke and water in an
interleaved fashion.
Partitioned approaches may suffer from stability issues under

challenging scenarios such as highmass ratio of fluid to solid [Causin
et al. 2005]. In the simplest interleaved approach, one might try to
reduce the time step size to achieve better stability. However, it
has been shown that the stability condition on the time step is not
always achievable for certain problem parameters [Le Tallec and
Mouro 2001; Vierendeels et al. 2011]. Several methods attempt to
mitigate the stability problems of partitioned solvers, for example, by
incorporating relaxation into the fixed-point iteration [Küttler and
Wall 2008]. When Gauss-Seidel subiterations with underrelaxation
are used, a very small underrelaxation factor may be needed for
convergence [Vierendeels et al. 2011].

Another approach to improving stability of partitioned schemes
is the use of a reduced monolithic model as an intermediary be-
tween the solvers [Degroote 2013; Degroote et al. 2010; Gerbeau
and Vidrascu 2003; Vierendeels et al. 2007]. We build on the method
introduced in [Vierendeels 2006; Vierendeels et al. 2007], where
local, linear reduced-order models of the solid and fluid solvers
are constructed on the fly using the input/output pairs collected
from the solver calls. The reduced order models are then solved in a
monolithic fashion to generate boundary conditions for each black-
box solver, improving stability and reducing iterations counts. We
note that this approach is closely related to quasi-Newton methods
for partitioned solid-fluid coupling [Degroote 2013; Degroote et al.
2009, 2010; Haelterman et al. 2016], in which the black-box solver
Jacobians are similarly approximated, and which have also been
shown to improve performance of partitioned schemes.
Many methods have also been developed for the coupling of La-

grangian fluids to deformable and rigid solids. Müller et al. simulated
fluids using the smoothed particle hydrodynamics (SPH) method,
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interacting with deformable solids, modeling the no-penetration and
no-slip boundary conditions as well as collisions via a momentum
exchange [Müller et al. 2004]. Direct forcing to achieving boundary
conditions was done in [Becker et al. 2009], and [Oh et al. 2009]
proposed a conservative, impulse-based interaction between rigid
bodies and SPH fluids. Particle-based granular flows were two-way
coupled with solids in [Narain et al. 2010]. A momentum-conserving
approach for coupling SPH to thin and volumetric rigid bodies was
proposed in [Akinci et al. 2012], and coupling to elastic solids was
presented in [Akinci et al. 2013]. Additionally, implicit two-way
coupling of solids and fluids is naturally handled in frameworks that
treat both in a unified fashion, such as with a fully Lagrangian ap-
proach [He et al. 2012; Keiser et al. 2005; Shao et al. 2015; Solenthaler
et al. 2007], or a hybrid approach [Stomakhin et al. 2014].

A variety of reduced-ordermodels have been developed for physics-
based animation, for example [Treuille et al. 2006] for reduced fluid
simulation, and [Barbič et al. 2009] for reduced deformable solid sim-
ulation. In contrast to these and related approaches, our approach
uses the reduced models to stabilize and accelerate convergence of
the iterated partitioned coupling, while the final fluid and solid state
in each time step is determined by the full solvers.

3 SOLID-FLUID COUPLING
The fluid and solid are coupled at their interface Γ through the
boundary conditions:

I: Kinematic (no-slip) condition u = V,
II: Dynamic condition

(
−pI + µ(∇u + ∇uT )

)
n = ΣSn.

where u, p, µ, and n are the fluid velocity, pressure, dynamic viscos-
ity, and outward unit normal, respectively, and V and ΣS are the
solid velocity and stress tensor, respectively. The dynamic condi-
tion, or balance of tractions at the interface, implies that there is a
pair of action/reaction forces at the interface, equal in magnitude
and opposite in direction, inspiring a conservative impulse-based
approach. In this work, we neglect the viscous component of the
fluid stress on the interface.

Fig. 2. A light piece of deformable foam interacts with a jet of smoke. (fluid
grid size: 100 × 150 × 100)

Fig. 3. Schematic representation of the partitioned coupling of black-box
fluid (F) and solid (S) solvers through the reduced model interface. Reduced
Jacobians F̂X and Ŝp are computed from input/output pairs of F and S
and tightly coupled in a low-rank monolithic system to generate improved
boundary conditions to F and S.

4 REDUCED MODEL INTERFACE
Rather than simple Gauss-Seidel iterations between the fluid and
solid solvers, we couple them through the Reduced Model Interface
(RMI) (Figure 3). In this approach, the boundary conditions passed
to the individual solvers are generated by an intermediate solver, a
monolithic system coupling reduced models of the solid and fluid.
Like other partitioned methods, this allows for the use of the fluid
and solid solvers as black boxes. Input/output pairs collected from
invocations of the fluid and solid solvers are used to approximate
their Jacobians and build the monolithic reduced system. The RMI
system is smaller than a full monolithic system, as it contains no
more than the number of interface variables. Although dense, as
opposed to the sparse monolithic discretizations such as [Robinson-
Mosher et al. 2008], it is also low-rank, typically capturing a small
number of modes, and this is exploited in the matrix computations
to avoid forming dense matrices the size of the number of interface
variables. Stability analysis of RMI coupling for unsteady flow in
an elastic tube showed that unstable components appear during
the first iterations and are implicitly coupled by the reduced model
interface [Degroote et al. 2008].

4.1 Reduced monolithic system
We follow the approach of [Vierendeels 2006; Vierendeels et al. 2007]
for coupling a fluid and volumetric deformable solid and extend it
to rigid bodies, free surfaces, and thin shells. The black-box fluid
solver is represented as

p = F (X ,V (X )), (1)

taking as input the solid node positions and effective velocities and
returning the fluid pressures on the solid. The black-box solid solver
is represented as

X = S(p), (2)

taking as input fluid pressures and returning the solid simulation
state.
The approach is illustrated in Figure 3. We seek to construct a

reduced-order model of the fluid and solid solvers, the RMI, to act
as intermediary, generating improved boundary condition inputs
to the black-box solvers. Since the RMI is reduced-order, it can be
efficiently solved in a monolithic fashion. Its cost is much less than
that of the individual fluid and solid solvers, as shown in Section 7.
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We next describe the RMI. During each time step, at iteration i , a
call to the fluid solver (1) yields an input/output pair (X f

i ,p
f
i ), and a

call to the solid solver (2) yields an output/input pair (X s
i ,p

s
i ). After

k iterations, the linear, reduced-order models of the fluid and solid
solvers are given by

p̂ = p
f
k + F̂X (X̂ − X

f
k ), (3)

X̂ = X s
k + Ŝp (p̂ − psk ), (4)

respectively, where F̂X is an approximation to the Jacobian of F
with respect to X , and Ŝp is an approximation to the Jacobian of S
with respect to p, and (X̂ , p̂) are unknowns. Moving unknown terms
to the left hand side, this becomes a monolithic set of equations(

I −F̂X
−Ŝp I

) (
p̂

X̂

)
=

(
p
f
k − F̂XX

f
k

X s
k − Ŝpp

s
k

)
. (5)

As only one of p̂ or X̂ is needed when invoking the solid or
fluid solver, they may be obtained individually by applying block
Gaussian elimination to Equation (5) as

X̂ =
(
I − Ŝp F̂X

)−1 [
X s
k + Ŝp

(
p
f
k − psk − F̂XX

f
k

)]
, (6)

p̂ =
(
I − F̂X Ŝp

)−1 [
p
f
k + F̂X

(
X s
k − X

f
k − Ŝpp

s
k

)]
. (7)

4.2 Constructing the reduced Jacobians
Next, we describe the computation of the reduced model Jacobians
F̂X and Ŝp . They are constructed from scratch at each iteration, using
data from all calls to the fluid or solid solver in the current time step.
The data pairs (X f

i ,p
f
i ) and (X

s
i ,p

s
i ), i = 1, . . . ,k are collected from

the fluid and solid solvers, respectively, over k iterations. Note that
the RMI layer translates between the disparate discretizations of
the solvers. In our examples, interface variables are located at solid
nodes, and fluid variables are mapped to/from the nodes through
interpolation and/or conservative distribution operators.

From the k fluid solver data pairs, we construct a position differ-
ence matrixV = (∆x

f
1 . . . ∆x

f
k−1), where ∆x

f
j = X

f
k −X

f
j , and a pres-

sure difference matrix P = (∆p
f
1 . . . ∆p

f
k−1) where ∆p

f
j = p

f
k − p

f
j .

A displacement ∆X is approximated by the vectors in V by solv-
ing the least squares problem minα ∥∆X − Vα ∥2. Taking the QR
factorization of V ,

V = QR, R =

[
R1
0

]
, Q =

[
Q1 Q2

]
,

it follows that

α = R−1
1 QT

1 ∆X ,

and setting the pressure differences consistently with the displace-
ments as ∆p = Pα , we get

∆p = PR−1
1 QT

1 ∆X .

The Jacobian F̂X is finally determined as

F̂X =
∂p

∂x
=
∂p

∂α

∂α

∂x
= PR−1

1 QT
1 .

In the same manner, the approximate Jacobian of the solid solver
Ŝp can be computed. Input/output pairs gathered from the solid

Fig. 4. A light rigid plank interacts with a jet of smoke. (fluid grid size:
100 × 150 × 100)

solver are used to compute difference matrices V̄ and P̄ . Using a
QR factorization P̄ = Q̄R̄, with R̄1 and Q̄1 analogous to R1 and Q1,
respectively, and the same procedure as for F̂X above, we get

Ŝp = V̄ R̄
−1
1 Q̄T

1 .

The least squares systems described above can become arbitrarily
ill-conditioned as more basis vectors are incorporated. To stably
compute the near rank-deficient least squares problem, we use the
Eigen library’s [Guennebaud et al. 2010] QR decomposition with
full pivoting.

4.3 Applying the RMI in the partitioned coupling
Equations (6) and (7) are solved in a matrix-free manner using GM-
RES, and the expressions of the form R−1QT x are evaluated through
backward substitution rather than formed explicitly. Therefore, al-
though form interface nodes, F̂X ism × 3m and Ŝp is 3m ×m, the
algorithm can exploit their low rank (no more than k − 1) in the
computations to achieve efficiency, and the cost of solving these
systems is a small fraction of the overall simulation time (0.2%−4.2%
in our examples).
Equation (6) is solved before each call to the fluid solver, while

Equation (7) is solved before each call to the solid solver, in order
to provide as input the RMI prediction of the converged state to
the individual solvers. Effective velocities are computed as V f

k+1 =

(X
f
k+1 − X0)/∆t every time before calling the fluid solver. The over-

all procedure is summarized in Algorithm 1.

4.4 Rigid Bodies
To handle rigid bodies, the RMI samples themwith embedded points,
whose positions and velocities are determined from the rigid body
state. The embedded points are spaced at a distance 1-1.5dx apart
to be commensurate with the grid. Fluid interaction forces at the
embedded points are mapped to a force and torque and passed to the
rigid body solver. The process described above for solid nodes is then
used without modification with the embedded points. Alternatively,
one could formulate the reduced model directly on the rigid body
degrees of freedom.
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ALGORITHM 1: Single substep of the extended partitioned method,
integrating from time tn to time tn+1

extrapolate solid positions to get X f
1

ps1 = p
f
1 = F (X f

1 , (X
f
1 − Xn )/∆t )

X f
2 = X

s
1 = S (p

s
1 )

ps2 = p
f
2 = F (X f

2 , (X
f
2 − Xn )/∆t )

X s
2 = S (p

s
2 )

R = X s
2 − X s

1
Construct F̂X with 1 mode
k = 1
while ∥R ∥ > tolerance do

Construct Ŝp with k modes
Solve Eq. (6) to get X f

k+1
p fk+1 = F (X f

k+1, (X
f
k+1 − Xn )/∆t )

Construct F̂X with k + 1 modes
Solve Eq. (7) to get psk+1
X s
k+1 = S (p

s
k+1)

R = X s
k+1 − X s

k
k = k + 1

end while

4.5 Thin Shells
Similar to [Guendelman et al. 2005], we compute the pressure differ-
ence in the direction of the face normal, ∆pf nf , on each fluid grid
face f that is marked as a solid boundary. For a solid node i , the
pressure difference from face f is weighted by Ki f = K(xi − xf ),
a distance-based kernel function. The final pressure-based force
on node i is fi =

∑
f
wi f ∆pf nf · niAi where wi f = Ki f /

∑
f ′
Ki f ′ is

normalized by the sum of weights of all faces influencing node i .
These nodal force components are used in place of the values pi

in Section 4.2. For volumetric solids, we use the same formulation
with pressures inside the solid set to zero.

Fig. 5. Schematic of solid in a mixed dual cell of the fluid simulation grid.

5 CONSERVATIVE IMPULSE-BASED COUPLING
The conservative monolithic coupling scheme of [Robinson-Mosher
et al. 2008] identified the impulse, IDC , implicitly applied in a mixed
dual cell of the fluid simulation MAC grid in order to satisfy the
no-slip boundary condition I. We review that here.
Consider a dual cell about a sample of an x-component of the

velocity field, u, as shown in Figure 5. Assume that forces other
than pressure and interaction with the solid at the interface Γ have
been integrated to get an intermediate velocity u∗, as in a typical
MAC grid-based Eulerian fluid simulation. Given pressure samples

Fig. 6. Center: A thin, transparent elastic balloon is stressed and filled by a
fast stream of water. (fluid grid size: 100 × 125 × 100, 4520 solid nodes)

pL and pR along the left and right faces of the cell with areas AL
and AR , respectively, the change in x-momentum due to pressure
and interaction with the solid can be written as

Mf u
n+1 −Mf u

∗ = pLAL − pRAR + IDC , (8)

where IDC ≈
∫
Γ
pnxdS , and nx is the x-component of the outward

unit normal to the solid. As in [Robinson-Mosher et al. 2008], rather
than explicitly computing −IDC as an approximate boundary inte-
gral, and applying that to the solid, we infer its value from Equa-
tion (8). Since IDC is the impulse applied on the fluid by the solid,
the impulse applied on the solid by the fluid must be −IDC in or-
der to satisfy the dynamic boundary condition II. We propose to
apply this impulse in the partitioned approach instead of explicitly
approximating

∫
Γ
pnxdS .

This has several potential benefits. First, this formulation is con-
servative, as the fluid/solid interaction is treated through a mo-
mentum exchange. Second, in [Robinson-Mosher et al. 2008], this
formulation led to an “added mass” term in the solid momentum
equation, which contributed to the improved stability properties
of that semi-implicit scheme. The added mass effect, whereby the
effect of the fluid on the solid can be modeled in part as an increase
in solid mass, has been shown to have a destabilizing effect on fully
explicit schemes [Causin et al. 2005]. While the added mass term
is treated explicitly in the case of our partitioned solve, we also ob-
serve improved stability with the impulse-based formulation, which
departs from the standard Dirichlet-Neumann scheme. Finally, as
in [Robinson-Mosher et al. 2008], the impulse-based formulation
applies directly to thin shells as well as volumetric solids, with
Mf = V ρ and AR = AL = A, where V and A are the volume and
face area, respectively, of the dual cell. As in [Robinson-Mosher et al.
2008], we take AR = AL = A in our implementation.
In order to apply the conservative formulation in a partitioned

fashion, the fluid solver must supply as output the impulse −IDC
rather than an explicitly computed approximation of the boundary
forces. This is a minor modification for fluid solvers that compute
pressures through a pressure projection step, such as fractional step
fluid solvers [Chorin 1967], or some recent SPH solvers [Ihmsen et al.
2014; Raveendran et al. 2011]. For other solvers, one would have to
estimate the constraint force applied to enforce the solid boundary
condition. We do not investigate this further in the present work.
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Fig. 7. Rigid balls of varying densities dropped into a pool of water exhibit correct buoyancy. Their densities relative to the water are (back row to front row)
0.1, 0.5, 0.9, and 10. (fluid grid size: 225 × 300 × 150)

When using the conservative formulation as part of the RMI,
we replace the pressure values pi in Section 4.2 with the impulses
IDC . Furthermore, rather than interpolating to solid nodes, the im-
pulses are distributed in a conservative fashion to solid nodes as
in [Robinson-Mosher et al. 2008]. We demonstrate in our examples
that use of the conservative formulation leads to improved stability
and lower iteration counts as compared with the non-conservative
formulation, for both the partitioned scheme with underrelaxation,
and the partitioned scheme with the RMI (see Table 2).

6 BOUNDARY PRESSURE PROJECTION
Several authors have noted a limitation in handling fully enclosed
fluid regions in partitioned or interleaved approaches for coupling
incompressible flows to structures [Batty et al. 2007; Degroote 2013].
Since the fluid cannot compress or expand, there should be no
net flow through the boundary of any fluid region. In a typical
partitioned solve, however, the solid solver is not aware of this
constraint, and will supply the fluid solver with boundary velocities
that violate it in the case of a fully enclosed fluid region. Internal
to the fluid solver, this constraint manifests as a pressure Poisson
equation with only Neumann boundary conditions, and hence with
a nontrivial nullspace, and constraint-violating velocities from the
solid lead to an incompatible linear system for pressure. These
“Neumann regions” occur in practice, sometimes spontaneously, and
must be detected and handled for robustness.

In [Guendelman et al. 2005], a partial solution was implemented
by projecting the solid velocities to be compatible. A related issue
is that the fluid pressure inside the enclosed region is determined
only up to an unknown constant p0. Since the fluid is accelerated
by the gradient of pressure, p0 is not needed for the fluid simula-
tion. However, at the enclosed region boundary, the solid should be
affected by p0, and if it is not properly accounted for, the forces on
the solid will be incorrect.

We propose a novel boundary pressure projection (BPP) method,
that to our knowledge has not been proposed elsewhere. In particu-
lar, we show that p0 is the Lagrange multiplier associated with the
boundary velocity constraint, and show how it can be determined
and incorporated into a partitioned solid/fluid coupling approach.
Like [Guendelman et al. 2005], our solution involves a projection
of the solid velocities to be compatible for the pressure solve. Our

derivation is more general and reduces to the form they used if
solids are voxelized to the grid and other boundary source terms are
neglected. Additionally, unlike that work, we also solve for the un-
known constant component of pressurep0 and apply this pressure to
the solid. This causes the solid to evolve toward constraint-satisfying
velocities.

Figure 8 demonstrates the partitioned approach with and without
determining and applying p0 to the solid. The simulation contains a
Neumann fluid region, a region fully enclosed by faces with veloci-
ties determined either from sources or the dynamic solid. Note that
without p0, the balloon fails to inflate, whereas with p0 determined
through our BPP, the balloon inflates similarly to our ground truth
monolithic simulation.

Let Γ be the boundary of a closed region in the fluid domain, for
example, the surface of the balloon and air source as pictured in
Figure 8. The divergence free constraint on the fluid implies that∫

Γ
u · ndS = 0.

This can be discretized on the MAC grid as∑
f

Af uf nf = 0,

whereAf is the face area, uf is the velocity component on that face,
and nf is the closed region normal component on that face (±1). We
write the velocities, area-weighted normal components, and dual cell
masses associated with the boundary faces asU = (u1,u2, . . . ,un )T ,
C = (A1n1,A2n2, . . . ,Annn )T , andM = diag(M1,M2, . . . ,Mn ). The

Fig. 8. Inflating a balloon. Left: a schematic of the fluid simulation, with
source faces (blue), where air is injected, and solid faces (cyan). Center:
a partitioned solve with compatibility projection but without p0 fails to
inflate. Right: the same simulation using our BPP method inflates properly.
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constraint equation is

CTU = 0, (9)

and the Jacobian of the constraint is given by CT . We seek an un-
known pressure p0 that when applied to the fluid in the enclosed
region causes the fluid to satisfy the constraint (9):

MÛ = MU ∗ + △tCp0. (10)

Note that the pressure p0 is the unknown Lagrange multiplier for
the constraint forceCp0. See [Witkin 1997] for a general description
of constrained particle dynamics and Lagrange multipliers. Multi-
plying both sides byM−1, applying the constraint (9), and solving
for p0, we get

p0 = −
1
△t

(
CTM−1C

)−1
CTU ∗. (11)

Plugging this result back into Equation (10) and rearranging gives
the projection

Û = PU ∗ (12)

P = I −M−1C(CTM−1C)−1CT (13)

If Mf = ρV in all dual cells and Af = A is a constant for all
faces, then the projection operator in Equation (13) simplifies to
(I − 1

nNNT ), where n is the number of boundary faces, and N is the
vector of normal components, i.e., C = AN . This is the projection
used in [Guendelman et al. 2005] to ensure compatible velocities for
the pressure solve, though they did not calculate p0 to apply to the
solid.
Note that some of the closed region boundary faces may be

sources or kinematic objects whose velocities are not determined
by the dynamic solid. In that case, those should be isolated from the
other faces in (9), and the constraint force and projection should
not be applied to those faces in (10) and (13). By partitioning the
velocity vector as U = (UT

s |UT
k )T , and the constraint equation

as C = (CTs |C
T
k )

T , where the subscripts s,k represent solid and
source/kinematic components, respectively, Equations (9)-(13) be-
come

CTs Us = −CTkUk

MsÛs = MsU
∗
s + △tCsp0

p0 = −
1
△t

(
CTs M

−1
s Cs

)−1
(CTs U

∗
s +C

T
kUk )

Û = PU ∗ −M−1
s Cs (C

T
s M

−1
s Cs )

−1CTkUk

P = I −M−1
s Cs (C

T
s M

−1
s Cs )

−1CTs

The BPP method also applies directly to multiple coupled Neu-
mann regions, as may occur, for example, with cloth folding over
itself. In this case,m constraints lead tom rows inCT ,CTM−1C is an
m ×m matrix rather than a scalar, and p0 is an m-vector containing
the unknown constant pressures for all of the enclosed regions. The
procedure for finding the vector p0 is then identical to that described
above.
[Küttler et al. 2006] also addressed the problem of partitioned

coupling of structures to incompressible fluids. They proposed sev-
eral possible solutions: to enforce the velocity constraint directly on
the solid inside the solid solver, while the fluid solver determines a

Fig. 9. A thin, elastic balloon is filled with a fast jet of smoke, and then
released. The balloon inflates properly due to the use of our BPP method.
Computation of this challenging scenario is stabilized by our extended
partitioned method. (fluid grid size: 100 × 150 × 100, 4520 solid nodes)

displacement (coupling the fluid and solid in a Neumann-Dirichlet
fashion for that one mode), or alternatively to relax the incompress-
ibility constraint. Our solution instead projects the solid velocities
based on the state of the fluid, and supplies the fluid with the compat-
ible velocities, and the solid with the pressure p0 needed to project
the velocities, maintaining the Dirichlet-Neumann structure of the
partitioning. Hence, in our approach, as for the other fluid pressures,
the determination ofp0 is not implicitly coupled to other solid forces,
and does not require a constraint to be imposed on the solid. When
strong coupling is achieved, the solid velocities on the enclosed
fluid region boundary converge to satisfy the incompressibility con-
straint.
To incorporate the BPP, each call F (X , (X − Xn )/∆t) in Algo-

rithm 1 is replaced by a call to Solve_Fluid(X ), shown in Algorithm 2.
We demonstrate the BPP method by simulating a balloon being filled
with smoke (Figure 9). The incompressible fluid inside the balloon
is fully enclosed by the balloon surface and smoke source, and us-
ing the BPP it inflates properly. We further demonstrate the BPP
method by simulating a hydraulic press, where a fully enclosed
incompressible medium is used to transmit pressures between two
pistons (Figure 10). In both cases, determining p0 and applying it to
the solid is essential to capturing the dynamics of the system.

ALGORITHM 2: Wrapper for the fluid solver which applies the bound-
ary pressure projection
p = function Solve_Fluid(X )

Compute effective velocities Ṽ = (X − Xn )/∆t
(V , p0) = BPP(Ṽ )
p = F (X , V ) + p0

end function

7 RESULTS
Here, we demonstrate individually the performance of the RMI, the
conservative impulses, the BPP, and the combination of these tech-
niques, the XPM. In general, monolithic approaches are expected
to be more efficient in computing a strongly coupled solution. The
benefit of the partitioned approach lies not in fast computation time,
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Fig. 10. Pressure applied to a small piston of a hydraulic press is transmitted undiminished to a large piston through a fully enclosed, incompressible medium,
using our BPP method to determine the constant component of fluid pressure p0. (fluid grid size: 160 × 160 × 80)

but in the ability to reuse existing software with little modification.
Therefore, we do not expect to outperform the monolithic solver, but
aim instead to improve performance of the partitioned approach.
The cost of the RMI layer is relatively small compared with the

cost of the fluid and solid solvers. Moreover, since we are using
existing black-box fluid and solid solvers, our primary measure
of performance gains due to our approach is in the reduction of
iteration counts.

We computed our examples with MPI parallelism on a cluster of
16 nodes, each comprised of 2 AMD Opteron 6272 CPUs totaling
32 cores, 64GB ECC memory, and 40Gbps InfiniBand networks. In
all of our simulations, we used the smaller of the time step sizes
computed by the individual fluid and solid solvers, and did not
impose additional stability conditions on the time step due to the
coupling. We limited the number of reduced model subiterations to
30, although the typical number of subiterations was much less. We
used a convergence tolerance of 5% of the fluid grid cell size.

7.1 Improved stability and convergence with RMI,
conservative impulses, and XPM

Fig. 11. 2D cloth
interacting with
smoke.

In this section, we study the benefits of using
the RMI, the conservative impulses, and both
(the XPM), on a two-dimensional example of
cloth interactingwith a jet of smokewith source
velocityU = 0.5, shown in Figure 11. We used
the PhysBAM cloth simulator and PhysBAM
smoke simulator. Though PhysBAM supports
monolithic coupling [Robinson-Mosher et al.
2008], we treated the solvers as black boxes and
coupled them in a partitioned fashion.

We compare the performance of our method
with that of a partitioned solver with underrelaxation, shown in
Algorithm 3, for different values of the underrelaxation parameter,
ω. For smaller values of ω, we expect better stability at the expense
of a greater number of iterations. Table 1 shows the average number
of iterations for the solves, with a dash indicating the simulation
became unstable before completion.M is the mass ratio of the bal-
loon to the air, and problem difficulty increases with decreasing
M . We found that for ω ≥ 0.5, the simple partitioned approach

Table 1. Average number of iterations per substep in the simulation of
Figure 11, with fewest iterations for each M in blue bold. The solvers com-
pared were the underrelaxed partitioned (P) with various underrelaxation
parameters, ω , underrelaxed partitioned with conservative impulses (P-C),
reduced model interface (RMI), and reduced model interface with conser-
vative impulses (XPM). Our XPM required the fewest iterations and was
able to handle the most challenging mass ratios where the underrelaxed
partitioned approach became unstable. Use of conservative impulses instead
of pressure-based forces improved stability overall for both the underrelaxed
partitioned method (P vs. P-C) and for the RMI (RMI vs. XPM).

M P P P P P P-C RMI XPM
ω ≥.5 ω=.2 ω=.1 ω=.05 ω=.01 ω=.05 ω=1 ω=1

.1 - - - - 28.2 5.5 5.5 3.8

.2 - - - 5.7 27.3 4.5 4.0 3.2

.5 - - 2.6 4.8 23.8 4.6 3.0 2.6

.8 - 3.4 2.6 5.3 10.2 5.0 2.7 2.1
1 - 2.2 2.8 5.6 9.1 4.7 2.6 2.0
2 - 2.0 2.9 5.1 5.2 3.2 2.0 2.0

failed to converge from the outset for all values of M . As M was
decreased, the partitioned approach required increasingly stringent
underrelaxation for convergence, which led to a greater number of
subiterations.

ALGORITHM 3: Partitioned solver with underrelaxation
k = 1
while ∥R ∥ > tolerance do

X k+1 = S (pk )
X k+1 = ωX k+1 + (1 − ω)X k

pk+1 = F (X k+1, (X k+1 − Xn )/∆t )
R = X k+1 − X k

k = k + 1
end while

When partitioning with underrelaxation is used, performance
can be improved by using Aitken relaxation, which dynamically
determines the underrelaxation parameter [Küttler and Wall 2008].
Though we do not compare with that approach here, the RMI has
been demonstrated to outperform Aitken relaxation as well [Vieren-
deels et al. 2007].
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7.1.1 Effect of RMI. Table 1 compares the partitioned approach
(P columns) with the RMI (RMI column). Specifically, we compare
the RMI with the partitioned method with the largest value of ω
that converged. The RMI outperformed the underrelaxed partitioned
approach in 3 out of 6 cases, tied it in 1 case, and performed slightly
worse in 2 cases. For M = .1, the RMI converged, whereas the
underrelaxed partitioned method with ω ≥ 0.05 did not. Therefore,
the RMI appears to improve the stability of the partitioned approach
over underrelaxation alone.

7.1.2 Effect of conservative impulses. The conservative impulse-
based formulation is orthogonal to the RMI and can be used with
the underrelaxed partitioned scheme. To illustrate the effect of us-
ing conservative impulses instead of the explicit pressure-based
forces, Table 1 compares the partitioned approach with pressured
based forces (column P, ω = .05) and with the conservative im-
pulses (column P-C, ω = .05). In every case, using the conservative
impulses reduced the number of iterations required. Furthermore,
forM = .1, ω ≥ .05, the partitioned approach with pressure-based
forces was unstable, whereas the partitioned approach with impulse-
based forces was stable. For this example, RMI and XPM also differ
only in the use of the conservative impulses. Comparison of Table 1
columns RMI and XPM shows that the use of conservative impulses
reduced average iteration counts by up to 30%.
Tables 1 and 2 show only average performance for a problem

that is initially easy. The significant benefits of the XPM are better
illustrated in Figure 12, which shows the number of iterations of the
underrelaxed partitioned and XPM solutions over 540 substeps of
two-dimensional simulations of a balloon filling with smoke, with
M = 0.8, ω = 0.2. Initially, both methods perform comparably, but as
the balloon stretches and the simulation becomes more challenging,
the performance of the underrelaxed partitioned approach drops,
while the XPM performance is largely unchanged, offering 3-4x
better performance in the most challenging part of the simulation.

Table 2. Percentage improvement when using conservative impulse terms,
with − indicating both simulations were unstable, and ∞ indicating the
unstable simulation was stabilized by using the conservative scheme. For the
underrelaxed partitioned scheme, using the conservative impulses generally
improved iteration counts and allowed for more challenging mass ratios,
though smaller ratios were still unstable. Using the XPM, all simulations
were stable and iteration counts were improved up to 30% over the RMI.

M P vs. P-C RMI vs.
ω = .05 ω = .1 ω = .2 ω = .5, .8 XPM (RMI-C)

.1 ∞ - - - 29.9

.2 21.3 ∞ - - 21.4

.5 4.0 -13.3 ∞ - 12.4

.8 6.2 8.2 15.4 - 22.0
1 16.3 25.1 -18.1 - 21.6
2 38.4 30.0 0.0 ∞ 0.3

Table 2 gives further details on the performance improvement
using the conservative impulses, comparing the partitioned scheme
with and without conservative impulses for a variety of underrelax-
ation parameters, as well as the RMI and XPM schemes.

Fig. 12. Number of iterations of the underrelaxed partitioned (P) and re-
duced model interface with conservative impulses (XPM) over 540 substeps
of two-dimensional simulations of a balloon filling with smoke. M = 0.8, ω
= 0.2. The values are averaged over a window of 10 substeps to reduce noise.

7.2 Boundary pressure projection method
The boundary pressure projection method is orthogonal to the RMI
or use of conservative impulses and can be used with any parti-
tioned scheme. Figure 8 shows a two-dimensional simulation of a
deformable balloon being inflated with air. Inside the balloon, the
air is surrounded by either solid faces, or by the source boundary
conditions, and hence constitutes a “Neumann region”. Without the
BPP, the balloon fails to properly inflate.

P P-BPP XPM M

Further comparison is shown in the figure above, depicting re-
sults of the partitioned scheme without BPP (P), partitioned scheme
with BPP (P-BPP), XPM, and monolithic scheme (M). Using the BPP,
both the P-BPP and XPM approaches successfully inflate the bal-
loon. XPM is better able than P-BPP to replicate the balloon shape
produced with the “ground truth” monolithic method.

Figure 9 shows a three-dimensional simulation of a balloon filling
with smoke, using XPM. As in the 2D case, the balloon does not prop-
erly inflate without the BPP. Figure 10 shows a three-dimensional
simulation of a hydraulic press, where pressure applied to the small
piston is transmitted undiminished to the large piston through a
fully enclosed and incompressible medium. Without the BPP, both
rigid plates fall downward and the simulation eventually fails. Pas-
sive tracer particles are included as a post-process to better visualize
the flow. We note that they are advected with interpolated veloci-
ties and forward Euler time integration, leading to visual density
artifacts that do not reflect density errors in the flow solver.

7.3 Variety of solids coupled to an Eulerian smoke and
water

We demonstrate our method in three dimensions on a variety of
challenging scenarios. We use PhysBAM for both the solid and
fluid solvers. We again use a tolerance of 0.05dx for the XPM. Fig-
ure 2 demonstrates the coupling of a deformable object and smoke
through the RMI. Figure 4 demonstrates our extension of the RMI
to handle rigid bodies by simulating a rigid plank coupled to smoke.
In Figure 6, a deformable balloon is filled with water using our XPM.
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Fig. 14. Complex example: Simulation of cloth and rigid bodies of varying densities coupled to Eulerian water. (fluid grid size: 120 × 120 × 60)

In Figure 7, the XPM is used to couple many rigid balls to water,
capturing the buoyancy forces. Figure 14 depicts a complex example
with interacting water, cloth, and rigid bodies of varying densities.

Table 3. The number of frames, average simulation time per substep, and
average number of substeps per frame are shown for several examples.

Example # frames Avg. time Avg. number
per substep substeps

(s) per frame
smoke balloon (Fig. 9) 117 30.3 39.2
water balloon (Fig. 6) 143 96.3 30.0
water piston (Fig. 10) 143 140.6 3.2
smoke rigid (Fig. 4) 80 96.6 10.5
smoke deformable (Fig. 2) 500 14.6 12.1
water rigid (Fig. 7) 495 30.7 11.8
water complex (Fig. 14) 447 48.9 16.0

Table 4. Percentage of time spent in the fluid solver, solid solver, and XPM
interface, and average number of modes used by the RMI (average number of
iterations minus one). The XPM interface computations require a relatively
small amount of time, taking 0.2-4.2% of the total simulation time in our
examples.

Example Fluid Solid XPM Avg
solver solver interface # modes

smoke balloon (Fig. 9) 95.5 0.3 4.2 2.1
water balloon (Fig. 6) 98.5 0.4 1.1 5.9
water piston (Fig. 10) 98.2 0.4 1.4 3.8
smoke rigid (Fig. 4) 99.7 0.1 0.2 2.5
smoke deformable (Fig. 2) 92.6 6.3 1.0 3.2
water rigid (Fig. 7) 99.1 0.4 0.5 1.0
water complex (Fig. 14) 94.5 3.8 1.7 5.1

Table 3 summarizes the simulations times for each example. Over-
all, our 3D simulations took roughly between a few minutes per
frame to up to a couple of hours per frame on up to 64 cores. A small
amount of time is spent in the XPM interface layer as compared
with the individual solid and fluid solvers (see Table 4). We also note
that in our experimentation, without conservative impulses, some
of these simulations did reach the maximum 30 iterations, whereas
with the conservative impulses, the average number of iterations
was 2-7.

7.4 Rigid bodies coupled to SPH fluids
We have implemented the reduced model interface for coupling an
SPH fluid solver and a rigid body solver. For the SPH solver, we used
the implementation of Divergence-Free SPH [Bender and Koschier
2017] in the open source SPlisHSPlasH library [Bender 2017], and for
the rigid body solver, we use the external position-based dynamics
[Deul et al. 2016] rigid body solver included with the SPlisHSPlasH
library. Internal to the SPlisHSPlasH library, solid-fluid coupling is
implemented using the method of Akinci et al. [Akinci et al. 2012],
which is a conservative, weak coupling scheme. In this method,
particles are sampled inside the solid surface and used as ghost SPH
particles in updating the dynamics of the fluid. Pressure forces are
applied conservatively to both components in opposite directions
to preserve momentum. We compare the performance of an un-
derrelaxed partitioned strong coupling scheme, the XPM, and the
native weak coupling of SPlisHSPlasH. For the XPM method, we
use the positions and pressure forces of the solid sample particles
to build the reduced system. In order to apply the XPM, we had to
add rollback functionality to both the rigid body and SPH solvers.
The method did not require any other changes.

7.4.1 XPM improves stability over weak coupling. Figure 15 (top
row) shows snapshots from a simulation of a rigid ball interacting
with fluid, where the density ratio of the ball to the fluid is 0.1.
The XPM results are iterated until a convergence tolerance of 10%
times the particle radii is achieved. In this case, both the weak
coupling native to SPlisHSPlasH and the XPM solution are stable.
Next, we decreased the density ratio to 0.05, making the problem
more challenging. In this case, the weakly coupled SPlisHSPlasH
became unstable. The XPM was able to compute the simulation
stably. Figure 15 (bottom row) shows snapshots from the simulation
with density ratio 0.05. In these examples, 5684 fluid particles were
used. Figure 16 shows an XPM simulation of an SPH fluid coupled
to a rigid sphere (M=0.05), cylinder (M=2), and torus (M=0.7), with
24389 SPH fluid particles.

7.4.2 XPM improves performance over underrelaxed strong cou-
pling. We also tested the underrelaxed partitioned strong coupling
approach in Algorithm 3 on the SPH/rigid coupling. We chose
ω = 0.05 for the underrelaxation parameter, since larger values
of ω had failed for density ratios less than 0.1 (see Table 1). As
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Fig. 15. Top row: Simulations of a rigid ball coupled to an SPH fluid, with
ball/fluid density ratio of 0.1. All images are at frame 26. Left: Weakly
coupled solution computed with SPlisHSPlasH is stable. Right: Solution
computed with XPM, with a tolerance of 10%, is also stable. Bottom row:
The density ratio has been decreased to a more challenging value of 0.05.
Left: Weakly coupled solution computed with SPlisHSPlasH is now unstable.
Right: Solution computed with XPM, with tolerance of 10%, is still stable.

Fig. 16. XPM simulation of an SPH fluid coupled to a rigid sphere (M=0.05),
cylinder (M=2), and torus (M=0.7), with 24389 SPH fluid particles. Top to
bottom, left to right: frame 17, 61, 105, and 360.

shown in Figure 17, strong coupling was able to simulate the exam-
ple with density ratio of 0.05, but took more iterations than the XPM
on average to do so. In the most challenging parts of the simulation,
the underrelaxed partitioned coupling approach required 2-3x more
iterations than the XPM. Therefore, the XPM improves performance
when compared with the underrelaxed, partitioned strong coupling.

7.4.3 Strong versus weak XPM. So far in the paper, we have not
explored the tolerance parameter used by the XPM. Here, we illus-
trate that the XPM can be used with a larger tolerance to compute a

Fig. 17. Number of iterations per substep for simulation of an SPH fluid cou-
pled to a rigid ball with density ratio 0.05, using the underrelaxed partitioned
scheme (P) and the XPMwith tolerance 1% and 10%. The XPM requires fewer
iterations on average than the underrelaxed partitioned scheme. Increasing
the tolerance further reduces iteration counts while stability is maintained.
The values are averaged over a window of 10 substeps to reduce noise.

weak coupling, which will be faster but less accurate. We computed
the rigid ball/fluid simulation with the XPM with both a tolerance
of 1% for strong coupling and a tolerance of 10% for weak coupling.
Both computed stably, and the 10% tolerance required fewer itera-
tions as expected. The larger tolerance may be a good choice when
speed is preferred over accuracy and stability is not compromised.
Figure 17 compares the iteration counts for the simulations of the
underrelaxed, strongly coupled solution, XPM with tolerance 1%,
and XPM with tolerance 10%.

8 CONCLUSION
Wehave presented a novel extended partitionedmethod for two-way
coupling of incompressible fluids and solids. We have demonstrated
that the XPM allows one to solve with a partitioned solver, reusing
existing black box solid/fluid solvers, scenarios that were previously
solved with specialized monolithic solvers. The XPM could be used
to couple other fluid and solid solvers in a black-box fashion, and
the reduced model interface could further apply to coupling various
materials efficiently. We also note that the reduced model is dynam-
ically updated throughout the simulation and applied locally in a
small time window, rather than using a fixed, precomputed basis
over a long simulation time. The RMI method is closely related to
quasi-Newton methods for partitioned solid-fluid coupling [Deg-
roote 2013; Degroote et al. 2009, 2010]. Recently, it was shown that
saving solver state over multiple time steps can lead to improved
estimates of the solver Jacobians [Haelterman et al. 2016]. It may
also be interesting to consider the use of other types of reduced
models in constructing the RMI.

When using the XPM, we ran most of our examples to a conver-
gence tolerance of 5% of the fluid grid cell size. Since convergence is
not necessarily required for graphics applications, it may be practi-
cally better to run the XPM with a small, fixed number of iterations,
or enforce a larger convergence tolerance, as demonstrated in the
SPH example. This maintains stability benefits of XPM, but the
reduces the cost at the expense of accuracy. While the XPM sig-
nificantly improves stability over the partitioned approach with
underrelaxation, it is not unconditionally stable.
In future work, we would like to further investigate the BPP on

multiple coupled regions, as outlined above. We are also interested
in applied our method to scenarios with surface tension.
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