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Figure 1: Left: An armadillo is tortured by being torn apart by the arms while being fired upon by spherical projectiles. Center:A heart-
breaking example. Right: Tearing a slice of swiss cheese.

Abstract

In this paper, we incorporate ductile fracture into the clustered
shape matching simulation framework for deformable bodies, thus
filling a gap in the shape matching literature. Our plasticity and
fracture models are inspired by the finite element literature on de-
formable bodies, but are adapted to the clustered shape matching
framework. The resulting approach is fast, versatile, and simple to
implement.
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Concepts: •Computing methodologies→ Simulation by anima-
tion; Physical simulation;

1 Introduction

Shape matching is a geometrically motivated technique for animat-
ing deformable bodies introduced a decade ago by Müller and col-
leagues [2005]. Figure 2 summarizes the approach. In their seminal
work, Müller and colleagues [2005] introduced a simple plasticity
model and, in follow up work, Rivers and James [2007] incorpo-
rated a simple fracture model. However, ductile fracture, the com-
bination of plastic deformation and fracture, has not yet been ad-
dressed in the shape matching literature. Moreover we adopt more
general and sophisticated approaches to both plasticity and fracture.

In this paper, we enable the animation of ductile fracture by in-
corporating plasticity and fracture models into the clustered shape
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matching framework. Our models are inspired by finite element ap-
proaches for animating deformable bodies, but are adapted to clus-
tered shape matching. Specifically, inspired by the work of Irving
and colleagues [2004] and Bargteil and colleagues [2007], we intro-
duce a multiplicative plasticity model that incorporates yield stress,
flow rate, and work hardening. Inspired by the work of O’Brien
and colleagues [1999; 2002], we introduce a cluster-based fracture
approach that splits individual clusters along the plane orthogonal
to the direction the cluster is most stretched. Taken together these
contributions allow animation of ductile fracture in the clustered
shape matching framework, as demonstrated in Figure 1.

2 Related Work

The geometrically motivated shape matching approach was intro-
duced by Müller and colleagues [2005], who demonstrated impres-
sive results and described the key advantages of the approach: effi-
ciency, stability, and controllability. Given these advantages, shape
matching is especially appealing in interactive animation contexts
such as video games. The authors also introduced several exten-
sions including linear and quadratic deformations (in addition to
rigid deformations), cluster-based deformation, and plasticity.

Two years later, Rivers and James [2007] introduced lattice-based
shape matching, which used a set of hierarchical lattices to de-
fine the shape matching clusters. They took advantage of the
regular structure of the lattices to achieve extremely high perfor-
mance. They also incorporated a simple fracture model that re-
moved over-extended links in the lattice. More recently, Bargteil
and Jones [2014] incorporated strain-limiting into clustered shape
matching. In follow-up work, Jones and colleagues [2015] ex-
plored improved clustering strategies and introduced simple colli-
sion proxies for the clusters. We incorporate our ductile fracture ap-
proach into their open-source framework and use their approaches
for strain limiting, clustering, and collision detection.

In order to improve stability for non-volumetric objects (i.e. shells
and strands) and to simplify sampling, Müller and Chentanez ex-
tended shape matching to track particle orientation [Müller and
Chentanez 2011b]. They also introduced a simple model for plas-
tic deformation. This approach proved to be useful for animating
clothing and hair attached to animated characters [Müller and Chen-
tanez 2011a].
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Figure 2: Shape Matching Overview: (a) An object (here, a square) is sampled with particles, pi, to get rest positions, ri. (b) As particles are
subjected to external forces and constraints, their positions, xi, are updated in world space. (c) The best-fitting rigid transformation of the
particles’ rest positions, ri, to their world positions, xi is computed. The dotted red circles are the goal positions, gi. (d) Hookean springs
pull the world positions toward the goal positions.

Other popular approaches to real-time animation of deformable
solids include position-based dynamics [Müller et al. 2007; Bender
et al. 2014; Macklin et al. 2014; Kelager et al. 2010], frame-based
models [Gilles et al. 2011; Faure et al. 2011], and projective dy-
namics [Liu et al. 2013; Bouaziz et al. 2014]. While plasticity and
fracture have been demonstrated for position-based dynamics, such
phenomena invalidate the precomputations that make frame-based
models and projective dynamics computationally efficient. As ar-
gued by Bargteil and Jones [2014], the shape matching framework
has some advantages over position-based dynamics; in particular
better adherence to Newton’s first and second laws of motion.

Ductile fracture is distinguished from brittle fracture by the inclu-
sion of plastic deformation. Materials undergoing ductile fracture
(e.g. play dough) appear to tear, while brittle materials (e.g. glass)
appear to shatter. Most real-world materials demonstrate some
amount of plastic deformation during failure, so purely brittle mod-
els have fairly limited application in computer animation. Both
plasticity and fracture were first demonstrated in computer anima-
tion by the pioneering work of Terzopoulos and Fleischer [1988];
however, it was O’Brien and colleagues [2002] who first combined
these phenomena to animate ductile fracture. Since that time, plas-
ticity and fracture have remained very active research areas in com-
puter animation and a thorough review is beyond the scope of this
short paper.

Our approach to fracture closely resembles that of O’Brien and
colleagues [1999; 2002]; however, instead of splitting tetrahedra,
we split shape matching clusters. Our plasticity model closely re-
sembles that of Bargteil and colleagues [2007], except that we ap-
ply it to shape matching clusters instead of individual tetrahedra
and make no particular effort to ensure that plastic deformation
does not lead to instability, i.e. we do not update clusters to en-
sure well-conditioned matrices as done by, for example, Jones and
colleagues [2014]. While this can be done in the proposed frame-
work, in practice we have found it sufficient to limit the total plastic
deformation through work hardening and other plasticity parameter
adjustment.

3 Methods

For completeness and readability, we first briefly review the shape
matching approach of Müller and colleagues [2005] before intro-
ducing our plasticity and fracture models. Finally we briefly discuss
our approaches to sampling and clustering.

3.1 Shape Matching

In the shape matching framework objects are discretized into a set
of particles, pi ∈ P , with masses, mi, and rest positions, ri, that
follow a path, xi(t), in world-space through time. Shape matching
takes its name from the fact that, each frame, we match the rest
shape to the deformed shape by finding the least-squares best-fit
rigid transformation from the rest pose to the current deformed pose
by solving for the rotation matrix, R, and translation vector, x̄− r̄,
that minimizes ∑

i

mi‖R (ri − r̄)− (xi − x̄) ‖2. (1)

The best translation is given by the center-of-mass in the rest (r̄) and
world (x̄) space. Computing the rotation, R, is more involved. We
first compute the least-squares best-fit linear deformation gradient,
F. Specifically, we seek the F that minimizes∑

i

mi‖F (ri − r̄)− (xi − x̄) ‖2. (2)

Setting the derivative with respect to F to 0 and re-arranging terms
we arrive at

F =

(∑
i

miO(xi, ri)

)(∑
i

miO(ri, ri)

)−1

= AxrA
−1
rr ,

(3)
where O(·, ·) is the outer product matrix

O(ai,bi) = (ai − ā)
(
bi − b̄

)T
, (4)

and A∗∗ is a convenient shorthand. We then compute R using the
polar decomposition,

F = RS =
(
UVT

)(
VΣVT

)
(5)

where S = VΣVT is a symmetric matrix and UΣVT is the sin-
gular value decomposition (SVD) of F. While several researchers
(e.g. [Rivers and James 2007]) have pointed out that polar decom-
positions can be computed faster than the SVD, especially when
warm started, we use the SVD for its robustness and for our plas-
ticity and fracture models (see Sections 3.2 and 3.3). We also note
that we diverge slightly from Müller and colleagues [2005], fol-
lowing instead Jones and colleagues [2015], and compute the polar



decomposition of F, not the left matrix (Axr). This modification
is particularly important if the distribution of mass in the cluster is
non-uniform and F is not a pure rotation.

Given R and x̄− r̄, we define goal positions, gi, as

gi = R (ri − r̄) + x̄. (6)

Hookean springs are then used to define forces that move the parti-
cles toward the goal positions.

Clustered Shape Matching Breaking an object into multiple
overlapping clusters allows for richer and more localized defor-
mations. Fortunately, handling multiple clusters is straightforward.
When computing a particle’s contribution to cluster quantities, we
divide the particle’s mass among the clusters to which it belongs.
For a particle pi in cluster c ∈ C we introduce a weight wic that
describes how much of pi’s mass is contributed to cluster c and
replace mi with wicmi in equations (1)-(3) and when computing
cluster mass and center-of-mass. Specifically, if particle pi belongs
to ni clusters, then the center-of-mass of cluster c, x̄c, is

x̄c =

∑
pi∈Pc

(wicmi) xi∑
pi∈Pc

(wicmi)
, (7)

where Pc is the set of particles in cluster c. Furthermore, when
computing the goal position, gi, for a particle we perform a
weighted average of the goal positions given by each cluster to
which it belongs. That is,

gi =
∑
c

wic gic, (8)

where gic is the goal position for particle pi in cluster c.

Clustering We use the clustering method of Jones and col-
leagues [2015]. This method is a variation of the fuzzy c-means
algortithm and produces overlapping clusters where each particle
may belong to several clusters to varying degrees. As in the popular
k-means clustering algorithm, this algorithm alternates between up-
dating cluster membership and updating cluster centers. However,
updating membership involves updating weights, wic, and cluster
centers are the weighted center-of-mass of members. Please see
Jones and colleagues [2015] for more details including analysis of
different weighting functions, varying cluster size, degree of over-
lap, etc.

Strain Limiting To maintain stability we adopt the strain limit-
ing approach advocated by Bargteil and Jones [2014]. However, in
the presence of plastic deformation (see Section 3.2) we typically
increase the maximum allowed stretch (γ in their paper) to avoid
instabilities when clusters disagree about the current rest shape.

Collision Handling We use the approach of Jones and col-
leagues [2015] for handling collisions. Their approach uses spheres
intersected with half-spaces as collision proxies for clusters, which
is very well-suited to our fracture approach that divides clusters
with planes.

Sampling Geometry The distribution of particles that model an
object affects the resulting simulation. We experimented with both
grid-based and blue noise sampling and preferred the results from
blue noise over the highly structured grid-based sampling. Our
blue noise sampler is based on Bridson’s fast Poisson disk sam-
pling [Bridson 2007]. In both cases, for objects whose boundary is
an arbitrary manifold, we simply sample particles within the bound-
ing box of the object and discard particles outside the surface.

3.2 Plasticity

Our approach to plastic deformation adapts the model of Bargteil
and colleagues [2007] to the clustered shape matching framework.
To accommodate plastic deformation we store and update an addi-
tional matrix, Fpc , for each cluster, c. For readability we drop the
subscript, but the following is computed for each cluster. We then
compute the elastic part of the deformation gradient

Fe = F (Fp)−1 , (9)

where F is given by Equation (3). We then decompose Fe in Equa-
tion (5).

Fp is initialized to the identity, I. Then each timestep we compute
the volume preserving part of the diagonalized Fe,

F∗ = det(Σe)−1/3Σe. (10)

We then compare
‖F∗ − I‖F (11)

to a plastic yield threshold, λ, where ‖ · ‖F is the Frobenius norm.
If the threshold is not exceeded Fp remains unchanged. Otherwise
we update Fp by

Fpnew = (F∗)
γ

VFpold, (12)

where V is the matrix of right singular vectors in Equation (5) and
γ is given by

γ = min

(
ν ∗ ‖F∗ − I‖F − λ−Kα

‖F∗ − I‖F
, 1

)
, (13)

where ν and K are user-given flow rate and work harden-
ing/softening constant, respectively, and α is a measure of cumu-
lative stress that is initialized to zero and then updated by

α̇ = ‖Fe − I‖F . (14)

We do not apply additional left-hand rotations when comput-
ing Fpnew as these would be discarded during the decomposition
in Equation (5).

3.3 Fracture

To model fracture, we allow shape matching clusters to split into
two clusters. Each timestep, for each cluster, we compare the
largest singular value, Σmax, computed in Equation (5), to a tough-
ness, τc, which can vary between clusters. If Σmax > τc then the
cluster is added to a priority queue with priority Σmax−τc. We also
record the corresponding right singular vector Vmax. The fracture
process occurs at the end of the timestep, after computing dynam-
ics. We iteratively remove clusters from the priority queue and, if
the Σmax still exceeds τc, we split the cluster into two clusters as
follows.

We assume that the fracture surface is defined by the plane that
passes through the center of mass of the cluster, x̄c, and is orthog-
onal to the singular vector Vmax. Particles on the positive side of
this plane are removed from the cluster and added to a new cluster.

To propagate fractures to nearby clusters, we examine each particle
in the split cluster. If a particle is a member of clusters on both
sides of the fracture plane, it is split into two particles. The mass is
divided between the two new particles based on how many clusters
they belong to; all other properties are copied to both new particles.
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Figure 3: Left: a cluster is fractured along a splitting plane defined
by its center of mass and the vector Vmax. Right: splits are prop-
agated to nearby clusters. Since the blue particle is a member of
clusters on both sides of the fracture plane, it is split into two new
particles, one in cluster c1, one in cluster c2.

This process mimics duplication of node degrees of freedom in fi-
nite element approaches to fracture. To compare which side of the
plane the particle and clusters are on, we evaluate

sign ((xi − x̄c) ·Vmax) 6= sign ((x̄d − x̄c) ·Vmax) . (15)

for each cluster, d, of which particle i is a member. This process is
illustrated in Figure 3. We also split “outlier” particles, which, even
after strain limiting, are still too far from a cluster center. In this
case, we create a new particle associated only with the cluster and
dissociate the cluster from the original particle.

Initially our clusters are well sampled; however, fractures may cre-
ate degenerate clusters. To prevent instability due to these clusters,
we compute A−1

rr through the pseudoinverse. If, when computing
the pseudoinverse, any of the singular values are thresholded, we
set Fpc = I.

Because cluster membership may have changed due to the fractur-
ing of a different cluster, we verify that Σmax > τc before frac-
turing and also recompute Vmax. A remaining issue is that after
fracture it may take several timesteps for elastic forces to reduce the
strain in fractured clusters. Consequently, at the next timestep Σmax

may still be greater than τc resulting in additional fracture. This
process tends to continue, leading to clusters breaking up into indi-
vidual particles in a few timesteps—an artifact we refer to as “parti-
cle spray.” This artifact is less problematic for animations of brittle
fracture, but is undesirable in ductile fracture. We have developed
two approaches to addressing the artifact. The simplest is to disal-
low fracture for a cluster that has fractured until Σmax < τc. The
second, more flexible, approach boosts τc after a fracture. Specifi-
cally,

τc = τ0(1 + τb)e
τf t, (16)

where τ0 is the initial toughness for the cluster, τb is the maximal
boost, and τf controls how quickly the boost falls off. Both ap-
proaches effectively address the artifact.

As clusters fracture and particles split, some clusters may represent
negligible mass or may have too few particles to meaningfully con-
tribute to the simulation. Thus, when a clusters mass goes below a
threshold or it has less then four member particles we delete it from
the system. Due to cluster removal, some particles may not belong
to any cluster; these are also removed from the system.

4 Results and Discussion

We have used our method to animate a number of examples of duc-
tile fracture. Timing results taken on a Macbook Pro with a 2.4GHz

Figure 4: A bar is twisted and then the clamps are released. Top:
A tough plastic bar does not fracture. Bottom: The bar fractures
before the clamps are released.

Intel i5 processor are given in table Table 1. In all particle render-
ings, particle color is used to indicate the nearest cluster center.
We stress that clusters overlap and that particles typically belong
to more than one cluster. Furthermore, though particles decrease
in mass when they split during fracture, we do not modify the size
of particles in our renderings. Consequently, fractured clusters may
appear to have much larger mass than they actually do. We also note
that, to better demonstrate our technique many of our examples are
simplified and do not include gravity; this choice was made con-
sciously and does not reflect any limitation of our technique.

In our first example, an armadillo is tortured by simultaneously
pulling on and firing cannonballs at its arms (see Figure 1). Our
second example is more didactic; a simple bar is twisted (see Fig-
ure 4). First we demonstrate plastic deformation, which allows the
bar to maintain its twisted shape, then we enable fracture. This
twisting deformation causes the two large tears in the material, one
which separates the object into two pieces, and a large partial tear.
In our third example a projectile is fired through a thin sheet of ma-
terial with various material properties (see Figure 5). The weak,
brittle material breaks into many small pieces. The strong, brittle
material breaks into larger pieces. The ductile material deforms
plastically near the impact before fracturing, bending permanently
in the wake of the projectile. In our heartbreaking fourth example
a complex shape is pulled apart (see Figure 1). The complex shape
determines where the tear begins and how it propagates. Similarly,
in our final example the holes in a slice of swiss cheese determine
how the model is torn (see Figure 1). In our final example, a hollow
ball is dropped on the ground and fractures (see Figure 6).

Limitations and Future Work Our approach has a number of
limitations that provide ample potential for future work in clus-
tered shape matching. While our examples typically run at or near
real-time, one limitation of our current implementation is that the
computational cost is somewhat variable; many fractures occurring
at once can have a very significant impact on performance. In the
future it would be interesting to explore asynchronous fracturing
where, instead of emptying the priority queue every timestep, it is
processed as computational resources allow. Moreover, the clus-
tered shape matching framework is particularly amenable to paral-
lelization, but we have not yet explored this topic.

Like many fracture methods in computer animation, we do not have
a good solution to generating fractured geometry. Like previous
shape matching work [Müller et al. 2005; Rivers and James 2007],



Table 1: Timing results in ms per frame taken on a Macbook Pro with a 2.4Ghz Intel i5 processor.

example # particles dynamics plasticity fracture total
armadillo 20115 16 < 1 < 1 24
twisted bar 5317 7 < 1 0 7
twisted bar with fracture 5317 7 < 1 < 1 9
projectile through ductile plate 5325 20 < 1 3 27
broken heart 20132 22 < 1 <1 31
swiss cheese 25032 27 < 1 <1 39

Figure 5: A projectile is fired through a thin sheet of material with
varying material properties. top: weak and brittle; center: strong
and brittle; bottom: strong and ductile. Note permanent the plastic
deformation near the hole.

we can embed a high-resolution render mesh for unbreakable ob-
jects, but creating new geometry when fracture occurs is more diffi-
cult. Currently we use an off-the-shelf particle skinning tool [Bhat-
tacharya et al. 2015] to skin the simulation particles. This approach
suffers two major drawbacks: the results are low-resolution and the
fracture surfaces are overly smooth. One approach to generating
fracture geometry is to simply render the simulation geometry and
increase the resolution where fracture occurs [O’Brien and Hod-
gins 1999; O’Brien et al. 2002]. The simulation geometry can can

Figure 6: Three frames from a sequence where a hollow ball is
dropped on the ground and fractures.

later be coarsened to improve computational efficiency [Pfaff et al.
2014]. This approach leads to somewhat unpredictable costs and
is, at present, too slow for the interactive applications where shape
matching excels. Levine and colleagues [2014] suggested a num-
ber of other techniques for generating fracture geometry for spring-
mass systems that may be applicable in our interactive context. Ex-
ploring these ideas is an interesting avenue for future work.

Our blue-noise sampling improves upon the regular grids and is
effective for our purposes, but better approaches certainly exist. In
particular, it would be interesting to explore adaptive sampling so
that computational resources can be focused on interesting areas of
the object. Changing the sampling over time as done by Pauly and
colleagues [2005] is also a promising avenue for future work, which
may help address the geometric limitations discussed above.

The biggest limitation of our approach is a lack of theoretical un-
derpinnings for the clustered shape matching framework; we do
not yet have any mathematical tools to analyze the approach. We



do not really understand how the method behaves as particle counts
or timesteps decrease or as the cluster size or number of clusters
change. This limitation does not mean the approach is not useful.
After all, the finite element method was in use for decades before
a mathematical framework was developed to analyze its properties.
In a similar way, we believe the clustered shape-matching frame-
work will prove extremely useful in practice while researchers de-
velop mathematical tools for analysis.

Conclusion One of the primary advantages of the clustered shape
matching approach is that the number of degrees of freedom is
much larger then the number of “integration units”—clusters in this
case. The opposite is true of finite element methods with unstruc-
tured meshes where the number of tetrahedra is often considerably
larger than the number of vertices. For graphical applications, vi-
sual detail, which correlates with the number of degrees of freedom,
is of paramount importance and computation, which correlates with
“integration units,” is often limited. For these reasons, the clustered
shape matching framework is extremely appealing for computer an-
imation, especially interactive animation. The utility and versatility
of this framework is greatly improved by our extensions to the ani-
mation of ductile fracture.
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