
Computer Graphics Proceedings, Annual Conference Series, 2016

Example-based Plastic Deformation of Rigid Bodies

Ben Jones
University of Denver

Nils Thuerey
Technical University

of Munich

Tamar Shinar
University of California,

Riverside

Adam W. Bargteil
University of Maryland,

Baltimore County

Figure 1: Several stunt drivers crash in midair and their cars pile up on the ground. An artist provided a small set of example deformations
(bottom). At runtime, our simulation maps collision impulses to deformations that match the style of the provided examples while remaining
physically plausible. Colors of the right image indicate the spatially varying blend of example poses.

Abstract

Physics-based animation is often used to animate scenes containing
destruction of near-rigid, man-made materials. For these applica-
tions, the most important visual features are plastic deformation and
fracture. Methods based on continuum mechanics model these ma-
terials as elastoplastic, and must perform expensive elasticity com-
putations even though elastic deformations are imperceptibly small
for rigid materials. We introduce an example-based plasticity model
based on linear blend skinning that allows artists to author simula-
tion objects using familiar tools. Dynamics are computed using an
unmodified rigid body simulator, making our method computation-
ally efficient and easy to integrate into existing pipelines. We in-
troduce a flexible technique for mapping impulses computed by the
rigid body solver to local, example-based deformations. For com-
pleteness, our method also supports prescoring based fracture. We
demonstrate the practicality of our method by animating a variety
of destructive scenes.

Keywords: Plasticity, Deformation, Example-based Simulation,
Rigid Body Simulation, Skinning, Local Blending

Concepts: •Computing methodologies→ Simulation by anima-
tion; Physical simulation;

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper,, July 24 - 28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925979

1 Introduction

One of the greatest successes of physics-based animation is its
widespread use for creating scenes containing large-scale destruc-
tion. The materials in these scenes are often man-made, carefully
engineered and designed to be nearly rigid. Ensuring that build-
ing foundations remain stable, or that airplane wings maintain their
shape in the presence of strong winds is vital to ensuring safety. The
assumption of rigidity figuratively breaks down when rigid bodies
literally break. During failure, man-made materials such as steel
and concrete exhibit fracture and plastic deformation. For computer
graphics applications, these failure cases are the most important –
and most challenging – to animate.

Fracture is well-studied, both in engineering, and in computer
graphics. Methods based on continuum mechanics and finite ele-
ments can produce realistic crack patterns and propagation. These
methods are computationally expensive, however, because they typ-
ically model materials as elastic bodies. For mostly rigid objects,
spending computational resources on elasticity calculations is es-
sentially wasted effort, as most vibrations occur at frequencies that
we can’t see; rigid body simulation can capture almost all of the im-
portant dynamics of the system. Consequently, geometric or artist-
guided approaches to fracture are commonly employed in prac-
tice [Weinstein et al. 2008; Zafar et al. 2010; Criswell et al. 2010b;
Budsberg et al. 2014].

We propose a similarly practical approach to animating plastic de-
formation in destructive scenes. Rather than relying on continuum
mechanics and expensive elastoplastic simulations, in this paper
we present an approach to plastic deformation that fits into tra-
ditional, and inexpensive, rigid body simulation. By design, our
example-based approach leverages artist expertise and experience;
artists create a simple rig for their simulated objects, then deform
the object using this rig to create characteristic deformations. At
simulation time, object dynamics are computed using an unmodi-
fied rigid body simulator. The objects are deformed by mapping
impulses computed by the rigid body simulator to a spatially vary-
ing blend of the example deformations. This spatial variation in ex-
ample weights represents the key insight that allows our method to

1

http://dx.doi.org/10.1145/2897824.2925979

ACM SIGGRAPH 2016, Anaheim, CA, July, 24–28, 2016

create simulation assets that respond locally and naturally to stimuli
and demonstrate a rich space of run time deformations given only a
handful of artist examples.

The major contributions of this work are:

• An example-based deformation model based on linear blend
skinning with a spatially varying blend of examples

• A method for mapping from discrete rigid body impulses to
deformations

• A method for incorporating energy dissipation due to plas-
tic deformation in system dynamics by modulating the coeffi-
cient of restitution

The end result is a method that leverages existing artist expertise
with rigging and skinning models; provides intuitive control over
deformations by allowing artists to choose example deformations;
and leverages common, efficient rigid body simulators to compute
dynamics.

2 Related Work

As noted above, methods based on continuum mechanics are com-
monly used to animate fracture and plastic deformations. The
importance of these phenomena in computer animation is evi-
dent by the fact that a single year after Terzopoulos and col-
leagues [1987] demonstrated the first simulated elastic bodies Ter-
zopoulos and Fleischer [1988] enhanced these models with plastic-
ity and fracture. Since this seminal work a number of researchers
have demonstrated plastic deformation and fracture of solid ob-
jects using spring-mass [Norton et al. 1991; Hirota et al. 1998;
Hirota et al. 2000; Clavet et al. 2005; Levine et al. 2014], finite
element [O’Brien and Hodgins 1999; O’Brien et al. 2002; Irving
et al. 2004; Molino et al. 2004; Bargteil et al. 2007; Wojtan and
Turk 2008; Wojtan et al. 2009; Parker and O’Brien 2009; Wicke
et al. 2010; Clausen et al. 2013], point-based [Müller et al. 2004;
Pauly et al. 2005; Müller et al. 2007; Martin et al. 2010; Müller
and Chentanez 2011; Jones et al. 2014], and Eulerian [Fan et al.
2013] techniques. These methods have been quite successful and
many of them run in real-time, however all these approaches build
on techniques for simulating elastic bodies and necessarily require
more computation than rigid body simulation, even for objects that
demonstrate limited elastic deformations. In fact, because many of
these methods are designed to animate large elastic deformations,
they are particularly ill-suited to animating very stiff, nearly-rigid,
materials. In practice, these approaches settle for larger than desired
elastic deformations (e.g. [BeamNG 2016]), resort to coarse resolu-
tions, sacrifice real-time computation, or employ model reduction
through modal analysis (e.g. [Barbič and James 2005; Harmon and
Zorin 2013; Yang et al. 2015] or leverage other pre-computation
(e.g. [Liu et al. 2013; Bouaziz et al. 2014]) and sacrifice their ability
to accurately handle online changes to the underlying physics, such
as those that occur during fracture and/or plastic deformations. One
approach to limiting computational cost is to treat objects as rigid
bodies, but employ finite element simulation when plastic deforma-
tions might occur [Müller et al. 2001; Criswell et al. 2010a]. In
our approach, we never resort to full finite element simulation, in-
stead we use an artist’s description of desired plastic deformations
to guide the animation of plastic deformation.

More similar to our method is the classic approach of using rigid
body simulation to animate fracture. This approach generally
makes use of “pre-scoring,” or predefined fracture patterns. Typ-
ically, the individual pieces in the pre-scored geometry are loaded
into a rigid body simulator and constraints are added between adja-
cent pieces. At prescribed times or when internal stresses are large,

the constraints are removed creating the fracture effect. In an inter-
esting variation on this approach, Bao and colleagues [2007] used
quasistatic finite element analysis to create fracture and dent pat-
terns. In an alternative approach, Su and colleagues [2009] allowed
the pre-scoring patterns to move over the geometry to align with
collision events. This general approach has been well documented
in the visual effects industry [Weinstein et al. 2008; Zafar et al.
2010; Criswell et al. 2010b; Budsberg et al. 2014]. Our implemen-
tation also includes this general approach to fracture.

While enhancing rigid body simulation with fracture is both well-
studied and common in practice, enhancing rigid body simulations
with plastic deformations has remained relatively unexplored. One
classic approach commonly used in video games simply replaces
the underlying geometry when destructive events occur. Such ap-
proaches often employ finite state machines, impact accumulators,
and secondary effects such as smoke or explosions to hide tempo-
ral discontinuities. With such tools talented artists can create very
compelling animations of destruction. However, while these ap-
proaches may react differently to different stimuli, they are not able
to generalize beyond the discrete examples created by the artist. In
contrast, our approach locally blends multiple examples to create a
rich space of novel deformations.

More recently, Patkar and colleagues [2014] explored plastic de-
formation of rigid bodies through denting and bending. Denting
was accomplished with “dent maps” and artists were given control
over the degree of denting (“dent distance”) as well as the smooth-
ness of the dents. Bending was accomplished by embedding ar-
ticulated skeletons into the object geometry and allowing the joint
angles to vary over time. In a similar approach, Budsberg and col-
leagues [2014] decomposed objects into a set of spheres and placed
ball and socket joints between neighboring spheres. Plastic defor-
mation was achieved by modifying the rest state of these joints. In
contrast, our approach allows the artist to specify more general de-
formation rigs and we achieve local effects, analogous to dents, by
allowing example weights to vary spatially over the object.

We are not the first to use linear-blend skinning as the underlying
deformation model in a simulation. Gilles and colleagues [2011]
and Faure and colleagues [Faure et al. 2011] used linear-blend skin-
ning to reduce the number of degrees of freedom in the system,
opting for user control over analytic or data-driven model reduc-
tion [Barbič and James 2005]. While they used Lagrangian me-
chanics to simulate elasticity, we cast our problem as an energy
minimization to map impulses to plastic deformations. Similarly
Fan and colleagues [2013] map impulses between disparate simula-
tion techniques—in their case rigid body and Eulerian deformable.

Our approach also draws on the recent ideas behind “example-
based simulation.” Example-based, or data-driven, methods are
common in computer graphics, but until recently had seen lim-
ited application to animating passive objects. Cloth animation is
a notable exception because clothing is closely related to the un-
derlying character’s pose, which makes clothing an excellent can-
didate for combining data, skinning, and simulation. Kim and Ven-
drovsky [2008] demonstrated that the position of clothing could be
well predicted given a small number of example poses and cloth-
ing configurations. They also noted that the interface for artists was
particularly intuitive. If an artist didn’t like the results, they sim-
ply changed the examples. Of course, such an approach only works
when the number of examples is relatively small. More recently,
other researchers have explored various data-driven approaches to
cloth animation (e.g. [Wang et al. 2010; de Aguiar et al. 2010;
Feng et al. 2010; Kavan et al. 2011]). Very recently Hahn and col-
leagues [2014] used data to learn how to choose an effective low-
dimensional simulation subspace based on body pose and clothing
state. They noted that even though they did not explicitly ask for

2

Computer Graphics Proceedings, Annual Conference Series, 2016

Step RB simulator Deform objects with impulses Modulate coefficient
of restitution

…

Authoring

Input
geometry

Rig

Characteristic
Deformations

Project onto
examplesImpulses Update

example weights
Propagate to
neighborhood

Simulation

…

Figure 2: Overview of the authoring and simulation process.

sparse basis vectors, the vectors tended to be sparse, which resulted
in novel poses in a similar way to our spatially varying example
weights. Xu and colleagues [2014] also locally blend clothing ex-
amples based on body poses. In contrast, our blends are determined
by impulses from a rigid body simulation rather than from the pose
of an underlying skeleton.

Researchers have also been exploring example-based animation of
elastic bodies. This approach was introduced by Martin and col-
leagues [2011], who employed an additional energy functional that
draws the deformed world state of the elastic object toward an “ex-
ample manifold” determined by a set of artist chosen examples.
More recent work [Schumacher et al. 2012] improved performance
and used examples to also guide plastic deformations. Koyama
and colleagues [2012] proposed an alternative formulation based
on a shape-matching framework [Müller et al. 2005]. One way to
view their approach is that the rest shape of the object is chang-
ing over time—moving along the example manifold, which is de-
fined through linear interpolation of example poses. Jones and
colleagues [2013] adopted a similar approach and described addi-
tional mechanisms for moving along the example manifold. We
also take a similar approach, but we discard the elastic component
of the deformation and directly change the shape of the rigid body
to the shape defined by the position on the example manifold. Our
approach has two major advantages. First, because our deforma-
tions are computed from linear blend skinning rather than a contin-
uum mechanics model, it is computationally cheaper, more suited
to artistic authoring, and more flexible. Second, while previous
work [Martin et al. 2011; Koyama et al. 2012] broke objects into
regions and defined example manifolds for each region indepen-
dently, we avoid breaking the object into pieces and simply allow
the example weights to vary spatially across our object. This ap-
proach results in a rich and continuous space of deformations.

3 Method

To author assets that can be simulated using our technique, artists
begin by rigging their model with bones.1 Then, they use this rig to
deform their input mesh into a set of characteristic example poses.
We describe the particular methods used in the authoring phase of
our pipeline in Section 4. An overview of our method is shown in
Figure 2.

Objects in our system are modeled as rigid bodies, with a shape
computed via modified linear blend skinning. Each object in our
system stores standard rigid body properties:

1In this discussion, we use the word “bone” generically to refer to the
rig’s degrees of freedom. Because we use bounded biharmonic weights [Ja-
cobson et al. 2011] to deform our geometry we support bones, control han-
dles, and cages.

• density, ρ, and mass, m (both constant during simulation)
• inertia tensor, I
• linear position, xcom, and momentum, p
• orientation, Ω, and angular momentum, L
• coefficient of restitution, Cr .

In the following discussion, we assume that the geometry of our
object is modeled using a tetrahedral mesh with N vertices. We
note, however, that tetrahedral meshes are not required by our ap-
proach; they just simplify some computations in our implementa-
tion (see Section 4). The skinned vertex positions are determined
by the transformations of the B bones. The user provides a set of
E example poses for the object, where each example contains a ro-
tation and translation for each bone. To track skinning properties
over time, each object stores

• undeformed mesh vertex positions, u ∈ RN×3

• skinned mesh vertex positions, x ∈ RN×3

• skinning weights, W ∈ RN×B

• example weights, E ∈ RN×E

• deformation accumulator, ∆E ∈ RN×E

• example transformations, T ∈ R7B×E .

u, W, and T are constant, while the remaining properties change
during simulation. T ∈ R7B×E stores a position and quaternion
for each bone. The key to our method is using impulses collected
from the rigid body simulator to induce changes in E, which in
practice is quite sparse. u and x are stored in the object’s local
coordinate system. Other material parameters are described below.

3.1 Skinning

Our method supports stylized deformation of object geometry while
producing plausible local deformations by using a modified ver-
sion of linear blend skinning. In traditional linear blend skinning,
skinned vertex positions are computed as

xi =
∑
b∈B

WibTbui, (1)

where Tb is the current transformation of bone, b. To incorpo-
rate artist examples, we generalize the bone transformations, Tb, to
blends of the bone transformations in the examples. If transforma-
tions blended linearly, we could write,

xi =
∑
b∈B

Wib

(
E∑

e=1

EieTbe

)
ui. (2)

Instead we interpolate the translational and rotational components
separately, linearly blending the translations and interpolating rota-

3

ACM SIGGRAPH 2016, Anaheim, CA, July, 24–28, 2016

tions with QLERP [Kavan and Zara 2005],

xi =
∑
b∈B

Wib QLERP (Ei,Tb) ui. (3)

To avoid extrapolation outside of the example space, we ensure that
each entry of E is between 0 and 1, and that each row of E sums
to 1, i.e. ∀i∀e, 0 ≤ Eie ≤ 1 and ∀i,

∑
e eie = 1. Thinking of the

examples as defining an (E− 1)-dimensional simplex, each row of
E stores barycentric coordinates that describe how to combine the
example transformations for vertex i. The first column of E, which
corresponds to the rest pose, is initialized to 1 and the rest of the
entries are initialized to 0.

Notably, the barycentric coordinates vary spatially, but smoothly,
over our object; providing us with two advantages over global ap-
proaches to blending examples. First, we can achieve the somewhat
localized plastic deformations that we expect from colliding, other-
wise rigid, bodies. Second, and more subtly, as shown by Jones
and colleagues [2013], global blends of many different poses gives
unintuitive results that poorly match the provided example poses;
like mixing too many paints on a palette. In our approach, while
many examples are often used to create the whole deformation, the
deformation of any given vertex is typically a blend of just a few
examples, avoiding “muddy” blends.

3.2 Impulse-based Deformation

In traditional deformable body simulation, each vertex has its own
positional degrees of freedom and elastoplastic response is com-
puted by analyzing stresses. Since we model our objects as rigid,
this approach is unsuitable. Instead, we map the impulses generated
by the rigid body solver to deformations. Specifically, an impulse
ji at vertex i is mapped to a change in the barycentric coordinates
in row i of the matrix, E. To ensure smooth deformations, we prop-
agate this change to nearby vertices using a smoothing kernel. An
overview of this process is illustrated in the center part of Figure 2.

3.2.1 Projection

To compute the deformation at a single vertex, we seek to find a
change in barycentric coordinates, ∆e, that would move the vertex
in the direction of the applied impulse. We first map the impulse to
a desired change in position by

∆xi =
∆t

m
max (||ji|| − β, 0)

ji
‖ji‖

, (4)

where ∆t is the timestep, m is the mass of the object, and β is a
plastic yield threshold, which prevents deformation, for example,
during resting contact.

Next we compute the change in example weights that best matches
this desired change in position. We can construct a Jacobian matrix
whose columns represent the change in skinned position of vertex i
with respect to change of example weights,

Ji =
∂xi

∂Eie
,Ji ∈ R3×E . (5)

Column e of this matrix is the change in skinned position for vertex
i due to a change in example weight e. We compute these deriva-
tives exactly using automatic differentiation [Stauning and Bendt-
sen 2007].

Using a Jacobian to map from one coordinate space to another is
a common strategy. For example, in character animation, the prin-
cipal of virtual work maps forces in Cartesian space to torques in

joint space by applying the Jacobian transpose [Pratt et al. 2001].
We could employ a similar strategy by computing a mapping using

∆ei = JT
i ∆xi, (6)

where ∆ei is the change in example weights at vertex i and is a
non-physical quantity. This approach could be viewed as a trans-
formation to generalized coordinates. Another view is that we seek
the solution, ∆e, to the following minimization problem

min
∆e
‖ (xi(e + ∆e)− xi(e))−∆xi‖2, (7)

where xi(e) is the nonlinear function that gives the skinned posi-
tion of vertex i for barycentric example weights e. Equation (6)
gives the gradient direction for this nonlinear optimization problem
(assuming an initial guess of ∆e = 0 so that the first terms cancel).
To solve the nonlinear optimization, we could take a step in this di-
rection, update Ji, and compute a new gradient direction. Instead,
we have found it sufficient to take a single step of gradient descent
with a carefully chosen step size. So that the plastic deformation
is proportional to how much the impulse exceeds the plastic yield
threshold, we choose the size of the step in the gradient direction to
be α‖∆xi‖, with α a user-defined scaling parameter. Specifically,
we compute the change in example weights as

∆ei = α ||∆xi||
JT
i ∆xi

‖JT
i ∆xi‖

. (8)

To avoid dividing by zero when an impulse is orthogonal to all the
example deformations, we set ∆ei = 0 if ‖JT

i ∆xi‖ ≤ ε. We used
ε = 10−8 and this code was not triggered in any of our experiments.

An alternative and appealing approach is to linearize xi(e) in Equa-
tion (7), compute the pseudoinverse, J+, and compute

∆ei = αJ+∆xi. (9)

We initially tried this approach and found that J often has a wide
Eigenspectrum, with many Eigenvalues arbitrarily close to zero.
Consequently, results were highly sensitive to the choice of thresh-
old used when deciding whether to invert Eigenvalues and we were
unable to find good choices for individual examples, let alone a
choice that worked well across examples. We experimented with a
number of other approaches before settling on Equation (8), which
works quite well in our experience. The accompanying video in-
cludes comparisons to both Equation (9) and the “natural” step-size
for gradient descent,

∆ei = αJT
i ∆xi. (10)

We found that making the stepsize proportional to ‖∆xi‖ worked
surprisingly well and is very fast to compute.

3.2.2 Propagation and Application

Once we compute ∆e for the vertices where impulses have been
applied, we propagate the change to nearby vertices using a smooth-
ing kernel. However, we must be careful when choosing a distance
metric. Distances should be shape aware, which rules out Euclidean
distances. Because our skinning weights are smooth by design,
we considered computing weights between coordinates in skinning
weight space. However, we found that distances between points in
this space were close to a step function in our examples. Approxi-
mate geodesic distances, computed using a few passes of Dijkstra’s
algorithm, work well, and are used in all of our examples. We up-
date each row of the matrix ∆E by

∆Ej += φ

(
||xj − xi||

γ

)
∆ei (11)

4

Computer Graphics Proceedings, Annual Conference Series, 2016

where the γ > 0 is the radius of the kernel, φ, and represents a user
tunable parameter. We use the cubic kernel

φ(x) =

{
2x3 − 3x2 + 1 : x < 1
0 : otherwise. (12)

We emphasize that this smoothing is applied to the example weights
not to the rigid body impulses. Smoothing the impulses would lead
to “dent-like” behavior while smoothing the example weights more
closely follows the artist’s intent.

Large impulses could result in large, instantaneous deformations.
We address the resulting discontinuities by deforming our objects
over time, rather than at the instant of impact. Specifically, we up-
date the barycentric matrix by

E += (1− λ) ∆E, (13)

and then apply ∆E ∗= λ, where λ ∈ [0, 1) is a user-tunable
parameter that should vary with the inverse of the timestep. This
approach has several advantages. First, because

(1− λ)

∞∑
i=0

λi = 1 (14)

the total accumulated deformation is independent of λ ∈ [0, 1).
Second, we need to store only a single accumulation buffer ∆E. Fi-
nally, this approach exposes a single, fairly intuitive parameter; for
values of λ close to 0 the deformation happens very quickly, while
larger values result in a slower fade-in—a more delayed response.
Please see the video for a comparison between several values of λ.
To ensure that the rows of E remain barycentric, we clamp nega-
tive values to 0 and then scale each row so that its entries sum to
1. This normalization discards deformation that would cause us to
extrapolate outside the example space.

Once we have updated example weights, we compute new skinned
vertex positions, x. We translate and rotate x so the local center
of mass is at the origin, and is aligned with the principal axes of
inertia, as is required by our rigid body simulator. We also update
the moment of inertia to account for changes in mass distribution.

3.3 Dynamics

As outlined in Figure 2, object dynamics are computed using an
unmodified rigid body simulator (BulletPhysics in our implementa-
tion [Coumans 2014]). We perform triangle based collision detec-
tion, using a coarse collision geometry. We log the impulses applied
during each rigid body simulation timestep. In between timesteps,
we use these impulses to deform the objects as described in Sec-
tion 3.2.

Restitution Modification During a violent collision, part of the
kinetic energy of the system is dissipated as plastic deformation.
This important aspect of plasticity is exploited by auto manufactur-
ers, for example, who engineer components to crumple, reducing
impact on passengers. We model this phenomenon by modulating
the effective coefficient of restitution,Cr , while objects are deform-
ing. We found the following model worked well in practice: we set
Cr to the minimum of the default value C∗r ; a slight increase over
the previous timestep; and a decreased value after impact. Com-
pactly,

Cr := min (C∗r , Cr + µ∆t, exp (−ν||∆E||f)C∗r) , (15)

where µ and ν are user controls. The second term linearly increases
Cr after collisions and avoids jittering artifacts. We experimented
with several functions for the third, impact, term, such as a clamped
linear falloff, and preferred the exponential function over the alter-
natives.

4 Authoring Simulation Assets

Algorithm 1 Authoring Pipeline

Load closed, manifold, surface mesh
Add and position desired handles
Automatically generate tetrahedral mesh
Automatically add additional handles
Automatically compute skinning weights
Iterate

Use handles to create example pose

We leverage recent research contributions for rigging, and skin-
ning to automate as much of the authoring pipeline as possible. An
overview of the authoring process is given in Algorithm 1. Artists
begin by loading a closed triangle mesh into our tool. Next, they
position an initial set of control bones and handles within the mesh;
these initial bones allow the artist to place bones in key areas that
they plan to deform. Next, our authoring tool automatically gen-
erates a tetrahedral mesh that encloses and approximates the sur-
face mesh. Then the artist can choose to automatically add an arbi-
trary number of additional bones from the surface of the tetrahedral
mesh. Once the handles are positioned, skinning weights are au-
tomatically assigned to mesh vertices. The artist can then add as
many example deformations as they wish.

We choose to use bounded biharmonic skinning weights [Jacobson
et al. 2011], in part because of available open source code. These
weights are computed through a constrained optimization, which
requires a tetrahedral mesh of the object. As such, our pipeline cur-
rently makes use of the approximating tetrahedralization of Stuart
et al. [Stuart et al. 2013]. However, our algorithm is completely
oblivious to the particular choice of algorithm to compute the lin-
ear blend skinning weights. In our implementation, the tetrahedral
mesh is also used to quickly generate the coarse collision geometry
and to calculate approximate geodesic distances. We note that, un-
like many methods that depend on tetrahedral meshes, these com-
putations are not sensitive to mesh quality; our automatically gener-
ated meshes often contained inverted elements. Moreover, no part
of our algorithm inherently requires a tetrahedralization; other aux-
iliary structures, e.g. a regular grid, could easily be used for these
computations.

We found hand-placing bones in three-dimensional space to be
somewhat onerous. Thus our tool will also add a specified num-
ber of bones chosen from the vertices of the tetrahedral mesh. The
simple approach of creating a set of all vertices on the surface and
iteratively removing one of the two that are closest in Euclidean
distance worked surprisingly well and we did not consider addi-
tional approaches. For some examples we chose which of the two
vertices to remove arbitrarily, for others we favored retaining the
vertex closest to the bounding of the tetrahedral mesh. We found
creating deformations with these bones to be especially intuitive.
Of course artists may still add bones in regions of particular inter-
est.

Once the mesh is rigged, the artist manipulates the control han-
dles to produce characteristic deformations. We use the fast au-
tomatic skinning transformations approach of Jacobson and col-
leagues [2012] to automate rotational degrees of freedom.

Once the mesh is rigged and the characteristic deformations are
created, the artist can perform a rigid body simulation. In addi-
tion to setting standard rigid body parameters, we expose six new
parameters to artists: α, the scaling constant for mapping from dis-
placements to changes in barycentric example-coordinates (Equa-
tion (8)); β, the threshold for plastic deformation (Equation (4)); γ

5

ACM SIGGRAPH 2016, Anaheim, CA, July, 24–28, 2016

Figure 3: The kernel radius, γ, controls how far deformations
propagate. Smaller values generate denting behavior, while larger
values result in deformations that more closely match the example
poses.

the deformation radius (Equation (11); λ, the plasticity rate (Equa-
tion (13)); and µ and ν, the parameters that control the coefficient of
restitution (Equation (15)). α and β are straightforward to tune, for
example by running a rigid body simulation and recording the max-
imum impulses. γ determines how far deformations propagate and
is likewise straightforward to tune. The other parameters have more
subtle effects, and we achieved reasonable results without much
tuning. Since rigid body simulation is fast (most of our examples
required less than one minute to run), the artist is able to inter-
actively edit these parameters and even change the characteristic
deformations to create the desired behaviors.

5 Results and Discussion

To demonstrate the effect of the material parameters in our system,
we modify the parameters in a simple scene with 3 barrels being
dropped on a loading dock. As seen in the accompanying video, it is
possible to create widely varying results by tuning these parameters.
Figure 3 demonstrates the effect of varying the kernel radius, γ. In
Figure 4 we show the range of deformations that can be achieved
from barrels with identical material parameters and example poses
as they fall through a Pachinko machine.

To demonstrate the potential of our approach to use arbitrary defor-
mations as input to our system, we performed a thin-shell spring-
mass simulation of our barrel model and used the output to create
an example deformation for our system. Specifically, we set the po-
sitions of bones in our automatically generated rig to the positions
of the corresponding vertices in the simulation output. The result
is shown in Figure 5. Figure 6 demonstrates how, if a given set of
examples doesn’t produce the desired results, additional examples
can be added to improve them.

We also animated five more complex scenes that may appear in
movies or games. In the first, a car is pummeled by cannonballs
before another car falls from the sky (see Figure 7). The deforma-
tions of the car change over time as the best example from the most
recent impulse changes. When the second car falls from the sky,
the first car assumes the flattened (red) pose almost everywhere. In
the second, a reckless driver crashes into a stack of barrels and a
wall, wrecking the car and barrels. The barrels all have the same
material properties but display a wide variety of deformations due
to the different impulses applied. Figure 8 shows how the example
weights, E, vary over the object meshes.

We also created a scene with multi-car pile-up crashes shown in
Figure 1. Stunt drivers use ramps to become airborne and collide in

Figure 4: Barrels deform as they fall through a Pachinko machine.

midair. The cars become progressively more and more damaged as
they collide.

We adopt the classic and practical pre-scoring approach to frac-
ture. During the authoring phase, the artist breaks an object up into
pieces, which are then loaded into the rigid body simulator with
constraints that shared faces coincide. During simulation when a
constraint force exceeds a threshold, the constraint is removed. In
this case, we use the full volumetric tetrahedral mesh as collision
geometry.

Figure 9 shows a spaceship crashing into a shipping yard, causing
the ship and one of the cranes to break apart. Finally, we animate
a scene from a space battle. A fleet of small ships crashes into a

6

Computer Graphics Proceedings, Annual Conference Series, 2016

Figure 5: Example deformations can be extracted from simula-
tion data. We computed bone transforms matching this frame from
mass-spring simulation. The resulting simulation uses only a single
deformed example pose.

Figure 6: The original example poses did not contain any defor-
mations on the side of the barrel that hit the ledge. By adding an
additional example, we can improve the quality of the resulting an-
imation.

Figure 7: A car is buffeted with cannonballs, and then a larger
car is dropped onto it. The colors indicate example blend weights,
E; notice how they vary over the surface and change over time.
In the bottom left frame, a flattened example deformation was in-
cluded and the object largely assumes this example shape. In the
bottom right frame, without the flattened example, a different shape
emerges.

larger one, causing significant damage to their foe, but completely
destroying their fleet. The wings bend, twist, and break apart due
to the impacts. Sample frames are shown in Figure 10.

Table 1 gives some representative statistics for our simulation as-
sets.

Performance The performance of our method is closely tied to
the performance of the underlying rigid body simulator. Depend-
ing on the scene, our deformation method adds 42% to 59% over-

Figure 8: Colors represent the matrix, E, showing how the exam-
ple weights vary over the objects. White vertices are undeformed;
colored vertices correspond to the deformed examples.

Table 1: Simulation Asset Statistics

Object N B E
Barrel (Figure 4) 1790 12 3
Car (Figures 1 and 8) 4695 32 6
Crane (Figure 9) 1939 14 3
Big Spaceship (Figure 10) 4178 64 6
Little Spaceship (Figure 10) 1188 12 3

head per timestep on average (excluding the scene in Figure 10).
However, our approach is generally slower than typical rigid body
simulations, largely due to the fact that we use non-convex trian-
gle meshes as collision geometry. Because our meshes change over
time, it is impractical to employ the common trick of using approx-
imate collision geometry made up of simpler primitives (e.g., a set
of convex hull primitives), as these would need to be frequently re-
built. Triangle meshes lead not only to more expensive collision
detection, but to reduced timesteps; with framerate timesteps we
observed artifacts, such as tangled meshes, in the rigid body simu-
lation. Thus, while we did not observe any issues with our defor-
mation model at framerate timesteps, our simulations take several
timesteps per frame.

Despite this, several of our examples run in real-time, while the rest
are fast enough to allow artists to interactively tune parameters.

The examples in this paper were run on a 2013 Macbook Pro with
an integrated GPU. The projection and propagation were paral-
lelized on the CPU while skinning was performed on the GPU. We
made straightforward optimizations, such as avoiding re-skinning
objects when ∆E becomes negligible, but we did not fully opti-
mize our code. Detailed timing results are shown in Table 2. Figure
11 shows the per-frame computational cost of rigid body simulation
and deformation computations for the scene in Figure 4.

Table 2: Timing breakdown for pictured examples. Timings below
are the total time spent for each scene, in seconds

Scene ∆t RB Solver Deformation Average FPS
Figure 1 4e-3 54.2 6.8 54.4
Figure 8 5e-3 17.3 8.8 13.79
Figure 4 4e-3 64.7 47.8 10.6
Figure 9 2e-3 381 160 1.1
Figure 10 4e-3 43.2 53.1 6.2
Figure 7 4e-3 0.6 2.4 197.1

7

ACM SIGGRAPH 2016, Anaheim, CA, July, 24–28, 2016

Figure 9: A spaceship crashes through a shipping yard.

Figure 10: A small fleet of spaceships crashes into an enemy vessel.

Table 1

1 112

1 18

0 10

1 13

1 10

1 12

3 28

1 13

1 13

2 13

1 6

1 5

1 6

0 6

0 3

0 3

1 6

11 18

1 12

2 42

2 21

1 6

1 10

1 6

1 15

7 13

tim
e(

m
s)

0

125

250

375

500

frame number

Rigid Body Simulation Deformation

�1

Figure 11: Per-frame timing breakdown of the scene in Figure 4
(ms per 60 Hz frame).

Artist Experience To help evaluate the usability of our method,
we asked a digital art student to create a scene using an early ver-
sion of our tools. We provided the artist with a version of the scene
in Figure 9 with only rigid bodies and worked with him to add de-
formations using our approach. Over a two hour session, the artist
authored example deformations and we worked together to tune pa-
rameters to achieve the final result. With a more polished user inter-
face, we expect this task could have been accomplished in less than
one hour (iterating with our prototype requires editing text files,
rerunning the simulation, and reloading the output viewer).

The feedback we received form the artist was generally positive.
About our deformation model, he said “for non-physical deforma-
tion, it really looks like physics.” He also liked that he could au-
thor a “worst-case-scenario” deformation and have our simulator
deform continuously toward that pose, even supporting minor de-

formations with the style of the provided example. He noted that
this would be useful for authoring a single asset and reusing it many
times, as he did for the cranes in the scene. He also liked the ability
to add additional examples after seeing where objects collide dur-
ing a simulation and have the new examples blend naturally with
existing poses. The short runtimes of the method allowed him to
iterate quickly to tune parameters and refine the simulation.

We did encounter some problems during the experience. When
the example poses contained large rotations and objects underwent
strong impulses, our system sometimes created self-intersections in
the mesh. This was mitigated by adjusting the kernel radius, γ, and
modifying the example pose. Without experience using our simula-
tor, tuning simulation parameters was challenging at first; however,
after some experimentation, he began to gain intuition for how ad-
justing them affected the resulting deformations.

Limitations and Future Work Like all example-based methods,
the quality of our results is closely tied to the quality of the in-
put examples. Our rigs based on bounded biharmonic weights are
quite powerful, supporting bones, control handles, and cages. But,
linear blend skinning is a reduced deformation model that, in the
hands of novice users, tends to produce smooth deformations that
appear more like volumetric modeling clay than the steel thin shells
of which real-world objects are made. The detail present in Fig-
ure 5, where the example deformations are created from a spring-
mass system, suggests that this is not an inherent limitation of lin-
ear blend skinning rigs. However, our automatically generated rig
was only able to approximate the shapes in the simulation output.
A very promising area of future work is improved automatic rig
generation. A method that, given a set of arbitrary example defor-
mations, produces a rig that can approximate them well would be
very valuable. Such a technique would not only allow simulation
output to be used as examples, but would free artists to use any tool
they like to create examples. Kavan and colleagues [2010] might
provide some guidance in this direction.

Relatedly, integrating our approach into a full featured modeling
application would allow for greater flexibility. For example, users
could paint various parameters over the mesh to create weak or

8

Computer Graphics Proceedings, Annual Conference Series, 2016

strong areas. It would also be very interesting to integrate our ap-
proach into production pipelines and to explore the “layering” ap-
proaches that are typically used. Our method should fit very well
into this framework, allowing artists to add additional dents and
folds, perhaps through methods such as wrinkle meshes [Müller
and Chentanez 2010]. Such layering approaches is another avenue
that would help address the lack of high frequency detail in our ex-
amples. Of course, it would also be interesting to see secondary
effects like dust, smoke, and explosions.

Because the space of deformations used in our system is so large
objects may deform into self-intersecting configurations. This is
most common when the plasticity scaling parameter, α, is large
and the kernel radius, γ is small. Because the mesh is only used
for collision detection and rendering, these interpenetrations do not
cause stability issues during simulation. Treating objects as “two-
sided” during rendering further mitigates this problem.

Our examples deliberately use a small number of example defor-
mations, reducing the burden on the artist. If more examples were
used, the basis formed by the columns of Ji would be overcom-
plete and the mapping in Equation (8) would strike a balance be-
tween the input examples. It would be interesting to explore ways
of computing the example weights in such underconstrained scenar-
ios that satisfy secondary goals, such as smoothness of the example
weights or favoring using a single example over an average of all
examples. Abe and Popović [2006] might provide some guidance
in this direction.

The objects in our results are all treated as volumetric solids. Even
objects, like the barrels, that might be better approximated as thin
shells have their interior volume meshed. While this approach
worked well for our examples, extending our techniques to thin
shells remains an interesting area for future work. Relatedly, we
make no effort to preserve the volume of our objects. Even if the
artist’s examples maintain volume, interpolations of the examples
may not. It would be interesting to consider volume preservation as
a secondary goal when the artist’s examples form an overcomplete
basis.

Our method targets extreme destructive scenes. Scenes that involve
deformation that occurs slowly over time or that contain many small
impulses, would require enhancing our plasticity model to handle
creep and perhaps a different approach to the plastic yield condition
in Equation (4).

The underlying examples have a complex relationship with the final
animation. For example, changing an example deformation could
change the trajectories in the resulting rigid body simulation. More
direct artistic control over the deformation is an interesting area of
future work.

In summary, we have presented a technique for animating the fail-
ure of near-rigid man-made materials. Our primary contribution is
an example-based plasticity model based on linear blend skinning
that leverages rigid body simulation for dynamics. Our method is
fast, artist friendly, easily implemented, and integrates smoothly
into existing pipelines.

Acknowledgments

The authors are especially thankful to the anonymous reviewers for
their time and helpful comments. Their efforts helped dramatically
improve this work. This work was supported in part by National
Science Foundation awards IIS-1314896 and IIS-1314813 and by
the ERC project ERC-2014-StG-637014 realFlow. We want to
thank P. Jutzi for the car model, Ron Romero for work on our

pipeline, and digital art student Daniel Blair for 3D-modeling as-
sistance and for experimenting with our prototype system.

References

ABE, Y., AND POPOVIĆ, J. 2006. Interactive anima-
tion of dynamic manipulation. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
195–204.

BAO, Z., HONG, J.-M., TERAN, J., AND FEDKIW, R. 2007. Frac-
turing rigid materials. IEEE Trans. Vis. Comput. Graph. 13, 2
(Mar.), 370–378.

BARBIČ, J., AND JAMES, D. L. 2005. Real-time subspace integra-
tion for St. Venant-Kirchhoff deformable models. ACM Trans.
Graph. 24, 3, 982–990.

BARGTEIL, A. W., WOJTAN, C., HODGINS, J. K., AND TURK,
G. 2007. A finite element method for animating large viscoplas-
tic flow. ACM Trans. Graph. 26, 3, 16.

BEAMNG, 2016. http://www.beamng.com. accessed January 19,
2016.

BOUAZIZ, S., MARTIN, S., LIU, T., KAVAN, L., AND PAULY, M.
2014. Projective dynamics: Fusing constraint projections for fast
simulation. ACM Trans. Graph. 33, 4 (July), 154:1–154:11.

BUDSBERG, J., ZAFAR, N. B., AND ALDÉN, M. 2014. Elas-
tic and plastic deformations with rigid body dynamics. In ACM
SIGGRAPH Talks, 52:1–52:1.

CLAUSEN, P., WICKE, M., SHEWCHUK, J. R., AND O’BRIEN,
J. F. 2013. Simulating liquids and solid-liquid interactions with
lagrangian meshes. ACM Trans. Graph. 32, 2 (Apr.), 17:1–15.

CLAVET, S., BEAUDOIN, P., AND POULIN, P. 2005. Particle-
based viscoelastic fluid simulation. In Proccedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
219–228.

COUMANS, E., 2014. Bullet physics library. http://bulletphysics.
org/.

CRISWELL, B., LENTINE, M., AND SAUERS, S. 2010. Avatar:
Bending rigid bodies. In ACM SIGGRAPH 2010 Talks.

CRISWELL, B., SMITH, J., AND DEUBER, D. 2010. Transformers
2: Breaking buildings. In ACM SIGGRAPH Talks.

DE AGUIAR, E., SIGAL, L., TREUILLE, A., AND HODGINS, J. K.
2010. Stable spaces for real-time clothing. ACM Trans. Graph.
29, 4, 106:1–106:9.

FAN, Y., LITVEN, J., LEVIN, D. I. W., AND PAI, D. K. 2013.
Eulerian-on-lagrangian simulation. ACM Trans. Graph. 32, 3,
22:1–22:9.

FAURE, F., GILLES, B., BOUSQUET, G., AND PAI, D. K. 2011.
Sparse meshless models of complex deformable solids. ACM
Trans. Graph. 30, 4, 73:1–73:10.

FENG, W.-W., YU, Y., AND KIM, B.-U. 2010. A deformation
transformer for real-time cloth animation. ACM Trans. Graph.
29, 4, 108:1–108:9.

GILLES, B., BOUSQUET, G., FAURE, F., AND PAI, D. K. 2011.
Frame-based elastic models. ACM Trans. Graph. 30, 2, 15:1–
15:12.

9

http://www.beamng.com
http://bulletphysics.org/
http://bulletphysics.org/

ACM SIGGRAPH 2016, Anaheim, CA, July, 24–28, 2016

HAHN, F., THOMASZEWSKI, B., COROS, S., SUMNER, R. W.,
COLE, F., MEYER, M., DEROSE, T., AND GROSS, M. 2014.
Subspace clothing simulation using adaptive bases. ACM Trans.
Graph. 33, 4, 105:1–105:9.

HARMON, D., AND ZORIN, D. 2013. Subspace integration with
local deformations. ACM Trans. Graph. 32, 4 (July), 107:1–
107:10.

HIROTA, K., TANOUE, Y., AND KANEKO, T. 1998. Generation of
crack patterns with a physical model. The Visual Computer 14,
3, 126–137.

HIROTA, K., TANOUE, Y., AND KANEKO, T. 2000. Simulation of
three-dimensional cracks. The Visual Computer 16, 7, 371–378.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible fi-
nite elements for robust simulation of large deformation. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 131–140.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph. 30, 4, 78:1–78:8.

JACOBSON, A., BARAN, I., KAVAN, L., POPOVIĆ, J., AND
SORKINE, O. 2012. Fast automatic skinning transformations.
ACM Trans. Graph. 31, 4, 77:1–77:10.

JONES, B., POPOVIĆ, J., MCCANN, J., LI, W., AND BARGTEIL,
A. 2013. Dynamic sprites. In Proceedings of the ACM SIG-
GRAPH Conference on Motion in Games.

JONES, B., WARD, S., JALLEPALLI, A., PERENIA, J., AND
BARGTEIL, A. W. 2014. Deformation embedding for point-
based elastoplastic simulation. ACM Trans. Graph. 33, 2, 21:1–
21:9.

KAVAN, L., AND ZARA, J. 2005. Spherical blend skinning: A
real-time deformation of articulated models. In Proceedings of
the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, ACM Press, 9–16.

KAVAN, L., SLOAN, P.-P., AND O’SULLIVAN, C. 2010. Fast and
efficient skinning of animated meshes. Comput. Graph. Forum
29, 2, 327–336.

KAVAN, L., GERSZEWSKI, D., BARGTEIL, A., AND SLOAN, P.-
P. 2011. Physics-inspired upsampling for cloth simulation in
games. ACM Trans. Graph. 30, 4, 93:1–93:9.

KIM, T.-Y., AND VENDROVSKY, E. 2008. Drivenshape: a data-
driven approach for shape deformation. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, Eurographics Association, 49–55.

KOYAMA, Y., TAKAYAMA, K., UMETANI, N., AND IGARASHI,
T. 2012. Real-time example-based elastic deformation. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 19–24.

LEVINE, J. A., BARGTEIL, A. W., CORSI, C., TESSENDORF,
J., AND GEIST, R. 2014. A peridynamic perspective
on spring-mass fracture. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

LIU, T., BARGTEIL, A. W., O’BRIEN, J. F., AND KAVAN, L.
2013. Fast simulation of mass-spring systems. ACM Trans.
Graph. 32, 6, 214:1–214:7.

MARTIN, S., KAUFMANN, P., BOTSCH, M., GRINSPUN, E., AND
GROSS, M. 2010. Unified simulation of elastic rods, shells, and
solids. ACM Trans. Graph. 29, 39:1–39:10.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS,
M. 2011. Example-based elastic materials. ACM Trans. Graph.
30, 4, 72:1–72:8.

MOLINO, N., BAO, Z., AND FEDKIW, R. 2004. A virtual node
algorithm for changing mesh topology during simulation. ACM
Trans. Graph. 23, 3, 385–392.

MÜLLER, M., AND CHENTANEZ, N. 2010. Wrinkle meshes. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, 85–92.

MÜLLER, M., AND CHENTANEZ, N. 2011. Solid simulation with
oriented particles. ACM Trans. Graph. 30, 4 (July), 92:1–92:10.

MÜLLER, M., MCMILLAN, L., DORSEY, J., AND JAGNOW, R.
2001. Real-time simulation of deformation and fracture of stiff
materials. In Proceedings of the Eurographics Workshop on
Computer Animation and Simulation, 113–124.

MÜLLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS,
M., AND ALEXA, M. 2004. Point based animation of elas-
tic, plastic and melting objects. In The Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
141–151.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Trans. Graph. 24, 3, 471–478.

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2007. Position based dynamics. J. Vis. Comun. Image
Represent. 18, 2, 109–118.

NORTON, A., TURK, G., BACON, R., GERTH, J., AND
SWEENEY, P. 1991. Animation of fracture by physical mod-
eling. The Visual Computer 7, 4, 210–219.

O’BRIEN, J. F., AND HODGINS, J. K. 1999. Graphical modeling
and animation of brittle fracture. In The Proceedings of ACM
SIGGRAPH, 137–146.

O’BRIEN, J. F., BARGTEIL, A. W., AND HODGINS, J. K. 2002.
Graphical modeling and animation of ductile fracture. ACM
Trans. Graph. 21, 3, 291–294.

PARKER, E. G., AND O’BRIEN, J. F. 2009. Real-time deformation
and fracture in a game environment. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
156–166.

PATKAR, S., AANJANEYA, M., BARTLE, A., LEE, M., AND FED-
KIW, R. 2014. Efficient Denting and Bending of Rigid Bodies. In
Eurographics/ ACM SIGGRAPH Symposium on Computer Ani-
mation.

PAULY, M., KEISER, R., ADAMS, B., DUTRÉ;, P., GROSS, M.,
AND GUIBAS, L. J. 2005. Meshless animation of fracturing
solids. ACM Trans. Graph. 24, 3, 957–964.

PRATT, J., CHEW, C.-M., TORRES, A., DILWORTH, P., AND
PRATT, G. 2001. Virtual model control: An intuitive approach
for bipedal locomotion. The International Journal of Robotics
Research 20, 2, 129–143.

SCHUMACHER, C., THOMASZEWSKI, B., COROS, S., MARTIN,
S., SUMNER, R., AND GROSS, M. 2012. Efficient simula-
tion of example-based materials. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
1–8.

10

Computer Graphics Proceedings, Annual Conference Series, 2016

STAUNING, O., AND BENDTSEN, C., 2007. Fadbad++, flexible
automatic differentiation using templates and operator overload-
ing in c++. http://www.fadbad.com.

STUART, A., LEVINE, J., JONES, B., AND BARGTEIL, A. 2013.
Automatic construction of coarse, high-quality tetrahedraliza-
tions that enclose and approximate surfaces for animation. In
Proceedings of the ACM SIGGRAPH Conference on Motion in
Games.

SU, J., SCHROEDER, C., AND FEDKIW, R. 2009. Energy stabil-
ity and fracture for frame rate rigid body simulations. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 155–164.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Modeling in-
elastic deformation: Viscoelasticity, plasticity, fracture. In The
Proceedings of ACM SIGGRAPH, 269–278.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. SIGGRAPH Comput.
Graph. 21, 4, 205–214.

WANG, H., HECHT, F., RAMAMOORTHI, R., AND O’BRIEN, J.
2010. Example-based wrinkle synthesis for clothing animation.
ACM Trans. Graph. 29, 4, 107:1–107:8.

WEINSTEIN, R., PETTERSON, F., AND CRISWELL, B. 2008. De-
struction system. In ACM SIGGRAPH Talks, 71:1–71:1.

WICKE, M., RITCHIE, D., KLINGNER, B. M., BURKE, S.,
SHEWCHUK, J. R., AND O’BRIEN, J. F. 2010. Dynamic lo-
cal remeshing for elastoplastic simulation. ACM Trans. Graph.
29, 49:1–49:11.

WOJTAN, C., AND TURK, G. 2008. Fast viscoelastic behavior
with thin features. ACM Trans. Graph. 27, 3, 1–8.

WOJTAN, C., THÜREY, N., GROSS, M., AND TURK, G. 2009.
Deforming meshes that split and merge. ACM Trans. Graph. 28,
3, 76:1–76:10.

XU, W., UMENTANI, N., CHAO, Q., MAO, J., JIN, X., AND
TONG, X. 2014. Sensitivity-optimized rigging for example-
based real-time clothing synthesis. ACM Trans. Graph. 33, 4,
107:1–107:11.

YANG, Y., LI, D., XU, W., TIAN, Y., AND ZHENG, C. 2015.
Expediting precomputation for reduced deformable simulation.
ACM Trans. Graph. 34, 6, 243:1–243:13.

ZAFAR, N. B., STEPHENS, D., LARSSON, M., SAKAGUCHI,
R., CLIVE, M., SAMPATH, R., MUSETH, K., BLAKEY, D.,
GAZDIK, B., AND THOMAS, R. 2010. Destroying LA for
”2012”. In ACM SIGGRAPH Talks, 25:1–25:1.

11

http://www.fadbad.com

