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Abstract

In this paper, we address clustering and collision detection in the
clustered shape matching simulation framework for deformable
bodies. Our clustering algorithm is “fuzzy,” meaning that it gives
particles weighted membership in clusters. These weights are a sig-
nificant extension to the basic clustered shape matching framework
as they are used to divide particle mass among the clusters. We
explore several weighting schemes and demonstrate that the choice
of weighting scheme gives artists additional control over material
behavior. Furthermore, by design our clustering algorithm yields
spherical clusters, which not only results in sparse weight vectors,
but also exceptionally efficient collision geometry. We further en-
hance this simple collision proxy by intersecting with half-spaces
to allow for even better, yet still simple and computationally effi-
cient, collision proxies. The resulting approach is fast, versatile,
and simple to implement.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation.

Keywords: Shape Matching, Clustering, Collisions

1 Introduction

Introduced a decade ago by Müller and colleagues [2005], shape
matching is a geometrically motivated technique for animating de-
formable bodies. Figure 2 summarizes the method. The basic ap-
proach samples a deformable object with particles, which deter-
mine the degrees of freedom in the object. Each timestep, a best-
fit rigid transformation of the rest shape of the object to the cur-
rent configuration of particles is computed and Hookean springs are
used to pull the particles toward the transformed shape. A powerful
extension to this basic approach, also introduced by Müller and col-
leagues [2005], is to break the object into several overlapping clus-
ters. We refer to this approach as clusterd shape matching. Having
more than one cluster imbues the object with a richer space of de-
formation, while overlap keeps the object from falling apart. While
this approach lacks a well-developed mathematical underpinning,
it has a number of advantages that make it especially well-suited to
interactive graphics applications, such as video games.

In this paper, we address two important aspects of the clustered
shape matching framework, namely clustering and collision de-
tection. We consider two previously introduced clustering algo-
rithms and introduce a new algorithm tailored to our specific prob-
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Figure 1: Top: The particles in one of our scenes color-coded by
the closest cluster. Bottom: The collision geometry for the same
scene.

lem. Of particular note is that our new clustering algorithm is
“fuzzy,” meaning that particles have weighted membership in clus-
ters. Weighted membership is a significant extension to the ba-
sic clustered shape matching framework and greatly increases the
flexibility of the approach because the weights are used to deter-
mine how a particle’s mass is distributed between clusters. We ex-
plore several weighting schemes and demonstrate that the choice
of weighting scheme gives artists additional control over material
behavior. Furthermore, by design our clustering algorithm forms
spherical clusters that, unlike most other fuzzy clustering tech-
niques, yield sparse and spatially localized weight vectors.

Our clustering method also works well with our approach to colli-
sion detection. The spherical clusters result in exceptionally con-
venient collision geometry. We further enhance this simple colli-
sion proxy with half-spaces to allow for even better, yet still simple
and computationally efficient, collision proxies. The resulting col-
lision detection and handling code is very simple to implement and
computationally efficient. Combined these extensions significantly
enhance the power and versatility of the clustered shape matching
framework.



Figure 2: Shape Matching Overview: (a) An object (here, a square) is sampled with particles, pi, to get rest positions, ri. (b) As particles are
subjected to external forces and constraints, their positions, xi, are updated in world space. (c) The best-fitting rigid transformation of the
particles’ rest positions, ri, to their world positions, xi is computed. The dotted red circles are the goal positions, gi. (d) Hookean springs
pull the world positions toward the goal positions.

2 Related Work

The geometrically motivated shape matching approach was intro-
duced by Müller and colleagues [2005], who demonstrated im-
pressive results and described the key advantages of the approach:
efficiency, stability, and controllability. Given these advantages,
shape matching is especially appealing in interactive animation
contexts such as video games. The authors also introduced sev-
eral extensions including linear and quadratic deformations (in ad-
dition to rigid deformations), cluster-based deformation, and plas-
ticity. Their clusters were generated by regularly subdividing the
space around a given surface mesh into overlapping cubical regions.
Spring forces are then accumulated over all the clusters to which a
particle belongs, effectively imbuing particles in multiple clusters
with greater mass. In contrast, we create clusters fully automati-
cally using a variation of fuzzy c-means that favors spherical clus-
ters and distributes a particle’s mass among the clusters to which it
belongs using a variety of weighting functions.

Two years after the introduction of shape matching, Rivers and
James [2007] introduced lattice-based shape matching, which used
a set of hierarchical lattices to define the shape matching clus-
ters. They took advantage of the regular structure of the lattices
to achieve extremely high performance.

Despite impressive results and substantial promise, the shape
matching framework has been largely disregarded by the research
community in favor of position-based dynamics [Müller et al. 2007;
Bender et al. 2014; Macklin et al. 2014; Kelager et al. 2010], frame-
based models [Gilles et al. 2011; Faure et al. 2011], and projective
dynamics [Liu et al. 2013; Bouaziz et al. 2014]. Recently, however,
Bargteil and Jones [2014] incorporated strain-limiting into clus-
tered shape matching and pointed out several advantages of shape
matching over position-based dynamics. Most significantly, shape
matching respects Newton’s laws of motion.

Clustering is well-studied in the machine learning literature and
many techniques, such as k-means, have become standard tools in
computer graphics. A complete survey of this literature is beyond
the scope of this short paper, but for the sort of “fuzzy” clustering
we propose in this paper, we recommend the survey by Nock and
Nielsen [2006]. Similarly, collision detection is well-studied in the
computer graphics and robotics literature. For a survey of real-time
techniques we recommend the text by Ericson [2004] or the article
by Teschner and colleagues [2005]. There has also been some more
recent work that focuses on deformable bodies [Curtis et al. 2008;
He et al. 2015].

3 Methods

For completeness and readability, we first briefly review the shape
matching approach of Müller and colleagues [2005]. Figure 2 sum-
marizes the approach.

3.1 Shape Matching

In the shape matching framework objects are discretized into a set
of particles, pi ∈ P , with masses, mi, and rest positions, ri, that
follow a path, xi(t), in world space through time. Shape matching
takes its name from the fact that, each frame, we match the rest
shape to the deformed shape by finding the least-squares best-fit
rigid transformation from the rest pose to the current deformed pose
by solving for the rotation matrix, R, and translation vector, xcm−
rcm, that minimizes∑

i

mi‖R (ri − rcm)− (xi − xcm) ‖2. (1)

The best translation is given by the center of mass in the rest and
world space. Computing the rotation, R, is more involved. We first
compute the least-squares best-fit linear deformation gradient, F.
Specifically, we seek the F that minimizes∑

i

mi‖F (ri − rcm)− (xi − xcm) ‖2. (2)

Setting the derivative with respect to F to 0 and re-arranging terms
we arrive at

F =

(∑
i

miO(xi, ri)

)(∑
i

miO(ri, ri)

)−1

= AxrA
−1
rr ,

(3)
where O(·, ·) is the outer product matrix

O(ai,bi) = (ai − acm) (bi − bcm)T , (4)

and A∗∗ is a convenient shorthand. We then compute R using the
polar decomposition,

F = RS =
(
UVT

)(
VΣVT

)
(5)

where S = VΣVT is a symmetric matrix and UΣVT is the sin-
gular value decomposition (SVD) of F. While several researchers



(e.g. [Rivers and James 2007]) have pointed out that polar decom-
positions can be computed faster than the SVD, especially when
warm started, the SVD requires a negligible portion of our com-
putation time and, in our experiments, the optimized SVD in the
Eigen library was faster than our implementations of polar decom-
positions. Furthermore, the SVD is more robust in the presence
of degeneracies or inversions. We also note that we compute the
polar decomposition of F, not the left matrix (Axr) as done by
Müller and colleagues [2005]. This modification is particularly im-
portant if the distribution of mass in the cluster is non-uniform and
F is not a pure rotation.

Given R and xcm − rcm, we define goal positions, gi, as

gi = R (ri − rcm) + xcm. (6)

Hookean springs are then used to define forces that move the parti-
cles toward the goal positions.

3.2 Clustered Shape Matching

Handling multiple clusters is straightforward. When computing a
particle’s contribution to cluster quantities, we must divide the par-
ticle’s mass among its clusters. To do so we introduce a weightwi,c

for particle pi in cluster c ∈ C that describes how much of pi’s mass
is contributed to cluster c. These weights enter into equations (1)-
(3) by multiplying the particle’s mass. As an example, the center of
mass of cluster c, xcm,c = xc (dropping the cm for clarity), is

xc =

∑
pi∈Pc

(miwi,c) xi∑
pi∈Pc

(miwi,c)
(7)

where Pc is the set of particles in cluster c. We experimented with
five weighting schemes in our implementation. The first, and sim-
plest, weighting scheme divides the particles mass evenly among
the ni clusters it belongs to, wi,c = 1/ni. This scheme correspnds
to the “box” kernel, or constant weights,

box(xi,xc, h) = 1. (8)

Second is the well-known poly6(·) kernel [Müller et al. 2003],

poly6(xi,xc, h) =
315

64πh9

(
h2 − ‖xi − xc‖2

)3
, (9)

where h is the kernel width. Third is a blend of the box and poly6
kernels

blend(xi,xc, h) = β + poly6(xi,xc, h), (10)

where β is a blend parameter. Fourth is a simple inverse distance
squared kernel,

invsq(xi,xc, h) =
1

‖xi − xc‖2 + ε
, (11)

where ε prevents dividing by zero (we use ε = 0.0001). Fifth is the
fuzzy c-means weighting function [Dunn 1973; Bezdek 1981],

fcm(xi,xc, h) =
1∑

d∈C

(
‖xi − xc‖
‖xi − xd‖

) 2
m−1

, (12)

where m is a user-specified parameter greater than one. Note that
fcm is the only weighting function where the weight in one clus-
ter depends on the positions of other cluster centers, which signifi-
cantly complicates computation.

To ensure that the total mass of the clusters equals the total mass of
the particles, for all kernels we normalize our weights to a partition
of unity,

wi,c =
kernel(xi,xc, h)∑
d∈C kernel(xi,xd, h)

(13)

As discussed in Section 4 the choice of kernel can have significant
impact on the results; while we selected invsq as our default, our
implementation makes it easy to switch between kernels to satisfy
artistic goals.

As noted above, these weights show up in many of our calculations.
As another example, when computing the goal position, gi, for a
particle we perform a weighted average of the goal positions given
by each cluster it is a part of. That is,

gi =
∑
c

wi,c gi,c, (14)

where gi,c is the goal position for particle pi in cluster c.

Strain Limiting To maintain stability we adopt the strain limiting
approach advocated by Bargteil and Jones [2014].

3.3 Clustering

In our context, there are several desirable properities for a cluster-
ing algorithm. Of utmost importance is that the clusters overlap,
otherwise the simulated object will fall apart. The clusters must
also include all the particles, preferably with a modest number of
clusters. Finally, if the clusters are well-approximated by spheres,
collision handling becomes far simpler. While clustering is very
well-studied in machine learning, these properties are unique to our
problem and we are not aware of any algorithm tailored to these
constraints.

In our implementation we experimented with three clustering al-
gorithms. The first algorithm, random, borrowed from Bargteil
and Jones [2014], is a simple randomized scheme that iteratively
chooses a random particle that is not a member of any cluster, uses
its location as the center of a new cluster, and adds all particles
within a user-specified distance to the cluster. The algorithm ter-
minates when all particles are a member of at least one cluster.
Weights, cluster center of mass, etc. are determined after the al-
gorithm terminates. The user specifies the neighborhood radius—
maximum distance, d, from the cluster center to particles included
into the cluster; this d is then used in a spherical range query to
determine cluster membership. Note that in this algorithm, the user
has no direct control over the number of clusters, |C|.

The second algorithm, kmeans, uses k-means to determine cluster
centers; given k = |C| random seed locations for clusters, this two-
step algorithm iteratively

1. updates cluster membership for each particle by choosing the
nearest cluster center;

2. updates cluster centers to be the center of mass of the particles
in the cluster.

Convergence is achieved when cluster membership is no longer
changing. After the k-means algorithm terminates overlapping
clusters are computed by including all particles within a user-
specified distance, d, of the computed cluster centers. Finally,
membership weights, cluster center of mass, etc. are computed.

Our final algorithm, ours, more closely resembles fuzzy c-
means [Dunn 1973; Bezdek 1981], but explicitly seeks greater spar-
sity in the membership weights by forcing weights for particles far



from a cluster center to zero. As in the previous algorithm, we
choose initial cluster centers using k-means. However, we then
perform an additional two-step iterative optimization:

1. update cluster membership and weights;

2. update cluster centers to be the weighted center of mass of the
particles in the cluster.

Instead of computing the nearest cluster center for each particle as
in k-means, our algorithm includes all particles within a given dis-
tance, d, using a standard spherical range query, which is accel-
erated with a grid data structure. Computing the weights (Equa-
tion (13)) requires evaluating the above kernels for each particle in
each cluster and keeping a running sum of the weights for each par-
ticle. Updating the cluster centers simply requires computing Equa-
tion (7) for each cluster using the weights computed in the previous
step. To faciliate satisfying the first requirement that all particles
belong to at least one cluster, we add any particles that are not
within the neighborhood radius, d, of any cluster center to the near-
est cluster (in a similar manner to the k-means algorithm). Any
such particles immediately signal that the algorithm has not con-
verged. Otherwise, we declare convergence if cluster membership
remains the same for two iterations and the cluster centers have not
moved more than 0.1% of the neighborhood radius. If the algorithm
does not converge within a limited number of iterations we increase
the number of clusters, |C|, and/or the neighborhood radius, d, until
convergence is achieved.

Compared to k-means our algorithm has the advantage of including
the fact that clusters should overlap in the optimization itself, which
leads to slower convergence, but also to a clustering that is better
suited to our needs.

3.4 Collision Detection

We first describe the simple and efficient collision proxy geometry
we use for clusters and then describe our collision detection and
handling algorithm.

Collision Geometry Because we explicitly include the distance
constraint during clustering, the resulting clusters are generally well
approximated by spheres. However, for some input geometry, such
as a thin sheet, this approximation is less than ideal. Consequently,
we enhance our collision proxy by adding planes. Specifically, our
geometric representation of the collision proxy is the intersection
of a sphere with a set of half-spaces.

The radius of the sphere is given by the user-specified neighborhood
radius, d. The center of the sphere is chosen as the geometric center
of the range query used during clustering—the randomly chosen
seed particles for random algorithm; the cluster centers given by
k-means in the kmeans algorithm; or the cluster centers given by
ours. Note that with random and kmeans the algorithmic cluster
centers and the physical cluster center of mass will generally not be
the same point. One advantage of our algorithm is that, because the
weighted center of mass is computed during the optimization, the
algorithm’s output is the physical center of mass.

As mentioned above we intersect these sphere with half-spaces.
During initialization, after computing the clusters, we examine the
Eigenvectors, Vi, of the scatter matrix, Arr . These Eigenvectors
give the principal directions that describe the distribution of parti-
cles in the cluster. We compute the planes normal to these Eigen-
vectors that bound the particles in the cluster. Specifically, for each
Eigenvector we compute the dot product with each particle in the
cluster, keeping track of the minimum and maximum values, yeild-

ing six plane equations of the form

φ(x) = Vi · x + aj = 0. (15)

We adopt the convention that points for which φ(·) < 0 lie inside
the half-space. If a plane lies within a user-specified distance of
the center of the sphere—that is it cuts off a significant portion of
the collision volume—we add it to the collision geometry. This
geometric representation is stored in the rest space of the objcet.
More planes can be added at runtime by projecting them from world
space to rest space using F−1.

For each cluster we also store, in world space, the maximum dis-
tance from the center of mass to a member particle, yielding simple
collision proxy in world space.

Collision Detection and Handling During runtime, we check
for collision between every pair of clusters, c1 and c2. We explic-
itly prohibit collisions between any two clusters that “overlap,” or
have a particle in common. To facilitate quickly culling these col-
lisions we compute cluster overlap maps; each cluster stores a list
of clusters that it cannot collide with. Computing the overlap maps
is somewhat involved; for each particle, we inform every pair of
clusters in the particle’s membership list that there is an overlap.
Luckily, these maps can be computed once during initialization if
the clusters remain constant.

If two clusters do not have a membership overlap, we next check
whether their world space sphere proxies overlap. If not, there is
no collision and we continue to the next pair of clusters. If so, we
consider each particle, pi, in the first cluster, c1. We first check
whether the particle is inside the world space sphere proxy of the
second cluster, c2. If not, we continue to the next particle. If so, we
transform the particle’s world position into the second cluster’s rest
space, Specifically, we compute

x′i = rc2 + F−1
c2 (xi − xc2) (16)

We then project x′ onto our simple collision geometry by taking the
minimum of all projections onto the sphere and half-space com-
ponents. If the particle lies outside the sphere or any of the half-
spaces, we simply continue to the next particle. Otherwise, we
transform the projected point, y′i, to world space to get yi. Finally
we move the particle toward y. Specifically, we update xi as

xi = xi + γ (yi − xi) . (17)

With γ = 1 the collision should be completely resolved. In com-
plicated collision scenarios, with multiple constraints on any given
particle, choosing γ = 1 can be problematic, so we allow the user
to specify the value.

4 Results and Discussion

Artists must specify two parameters for our clustering algorithm:
the neighbor radius, d, and the desired number of clusters, |C|.
Additionally, artists may choose between all three of our cluster-
ing algorithms (random, kmeans, and ours) and between all five
weighting functions (box, poly6, blend, invsq, fcm). The accom-
panying video includes a variety of examples that explore the ef-
fects of these choices with a simple animation of a cube that is
stretched by a factor of 2 in the x-direction and released. In the
first set of examples we show the effect of increasing the number
of clusters, |C|, from 1 to 50, while choosing the minimal neighbor
radius that allows convergence. All these examples use ours algo-
rithm and the invsq kernel. These examples clearly show how more
clusters ”soften” up the object. However, since the neighborRadius



Figure 3: A sphere falls on a beam, causing it to fracture.

is minimal in some sense, there are still fairly sharp boundaries be-
tween the clusters. To illustrate the effect of the neighbor radius,
d, we fix the number of clusters, |C|, at 10 and increase d from
the minimal value needed for convergence. With a minimal radius,
there are sharp boundaries between the objects. With a larger ra-
dius the result is smoother. Using an even larger radius is akin to
using fewer clusters. Thus, there is a complex interaction between
these two parameters. One approach to authoring would be to first
choose the number of clusters and then increase the neighbor radius
from the minimal value until a desired smoothness is acheived. Au-
tomatically tuning the neighbor radius would be an interesting area
for future work.

We also show examples with the different algorithms and different
kernels for cluster sizes of 10 and 50. It is clear from these exam-
ples that both the underlying clustering algorithm and the choice of
weights have a significant impact on the material behavior. How-
ever, our clustering algorithm, because the weights are included in
the optimization, is more sensitive to the choice of weighting func-
tion.

Next, we have a more practical example of a sphere colliding with
a thin sheet. This example demonstrates our approach to collisions.
Many of the clusters in the thin sheet include the automatically de-
termined half-spaces demonstrating the efficacy of this approach.
On a typical laptop this example ran at 55 frames per second with
rendering, 161 frames per second without rendering. See Figure 1
for both the particle rendering as well as a visualization of the col-
lision geometry.

The next example demonstrates our approach on more complex ge-
ometry. In this example four instances of the bunny model collide
in zero gravity, see Figure 4. This example did not run in real-time.

Finally, we demonstrate our method’s ability to update the collision
proxies at runtime by including an example that exhibits fracture. In
this example, the stress caused by the collisions induces the objects
to break apart, see Figure 3.

Qualitatively, we found that the box kernel was too sharp to be sat-
isfactory and that the falloff of poly6 was overly smooth, resulting
in little resistance to deformation. blend performed better, but re-
quired setting an additional parameter. invsq and fcm performed
similarly; because invsq is simpler and does not require setting an
additional parameter, we chose it as our default kernel. When set-
ting up examples, we typically chose the number of clusters, |C|,

Figure 4: Several bunnies collide in zero gravity.

first and then adjusted the neighbor radius, d, until we achieve the
desired behavior. Too little overlap results in clusters that appear
almost disconnected, while too much overlap produces results that
could be achieved with fewer clusters. By default, our program au-
tomatically increases |C|and d if the clustering algorithm fails to
converge.

Limitations and Future Work Like other methods that lump
mass at points in the object, the distribution of mass in the object is
not uniform. For this reason, the stretching the floating cube does
not result in uniform stress throughout the object and, even though
momentum is preserved, the cube does not oscillate around its cen-
ter of mass. Such lumping artifacts decrease at higher resolution.
Shape matching is ill-suited to very stiff objects; the introduction
of the α parameter essentially ties the maximum stiffness to the
inverse of the timestep. This limitation is somewhat ameliorated
by strain limiting, but excessive use of strain limiting reduces our
method a version of position-based dynamics, with its attendant vi-
olations of Newton’s laws of motion.

It would be interesting to consider additional clustering shapes,
such as ellipsoids, that might better conform to complex geome-
try while remaining simple and computationally efficient. Our cur-
rent implementation does not employ a bounding volume hierar-
chy resulting in an asymptotic runtime for collision detection that
is quadratic in the number of clusters. Employing a variation of the
hierarchy of He and colleagues [He et al. 2015] is a promising di-
rection for future development and may allow the colliding bunnies
example to run in real time. Finally, while nothing in our approach
prevents spatially varying material properties, such variation is not
currently supported by our implementation.

In conclusion we have significantly extended the clustered shape
matching framework for animating deformable bodies by introduc-
ing a new “fuzzy” clustering algorithm that produces a highly flex-
ible weight distribution for each particle and also leads to a simple
collision proxy that we enhance with half-spaces. These approaches
will certainly improve the power and versatility of the clustered
shape matching framework.
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