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Abstract. Microtubule gliding assays, in which molecular motors anchored to a plate drive the
gliding motion of filaments in a quasi-two-dimensional fluid layer, have been shown to organize into a
variety of large-scale patterns. We derive a fully three-dimensional multiscale coarse-grained model of
a gliding assay including the evolution of densities of rigid filaments, bound motors, and free motors,
coupled to fluid equations. Our model combines continuum theories of polymeric liquids with the
force spreading approach of the immersed boundary method. We use dimensional and asymptotic
analysis to derive a reduced two-dimensional model and show that, to leading order, the filaments
evolve in a plane, similar to what is experimentally observed. We simulate our model numerically
with a GPU-based implementation and observe the same qualitative behavior as in experimental
work.
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1. Introduction. Active gels form the basic structural network of the cell and
can be synthesized by mixing cytoskeletal filaments and small motor proteins. In
such mixtures, the collective behavior is driven by the microscopic ATPase-generated
motion of the motor proteins along the filaments. A molecular motor typically consists
of a tail, a flexible stalk, and a head with two binding sites. Through the hydrolysis of
ATP at the binding sites, the motor grabs, pulls and releases the filament yielding a
processive directional motion and generating forces inside the cell. Molecular motors
have been the subject of many experimental [10, 8, 13, 14, 12, 5] and theoretical
[26, 20, 18] studies, which have resulted in a broader understanding of the molecular
stepping mechanism and the collaboration of many motors when carrying cargo along
filamentous tracks. On a larger scale, mixtures of cytoskeletal filaments and small
motor proteins have been shown to self-organize into a variety of macroscopic patterns
from asters to vortices to swarms [31, 30, 38]. We study gliding assays, where single
motors are adsorbed onto a substrate and filaments, stabilized so that their lengths
are fixed, glide over them in a quasi-two-dimensional fluid layer (Fig. 2.1). This
reduced system, where filaments do not crosslink, is used to study gliding velocities of
microtubules and motor directionality [33] and has been observed to form large-scale
patterns [38].

Systems of fluids, filaments, and motors are inherently multiscale in space and
time, making them a challenge to accurately model. Moreover, [41] showed that the
macroscopic behavior of these active mixtures is sensitive to the microscopic model. A
variety of theoretical models attempt to bridge the understanding of the microscopic
mechanisms with the emergent macroscopic phenomena. One computationally inten-
sive approach is to model collections of explicitly represented filaments and motors
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without coarse-graining [28, 30, 29]. In contrast, other modeling standpoints rely on
a generic hydrodynamic theory that is inherently macroscopic [24, 37, 22, 23, 11].
Considering gliding assays specifically, [21, 17] developed a Langevin dynamics model
coupling the dynamics of the filament, the dynamics of the motor head and the elas-
ticity of the motor stalks. Other approaches have exhibited pattern formation through
phenomenological particle-based steric interactions [38, 39], while [11] demonstrated
the importance of hydrodynamic effects in the collective behavior of large-scale sys-
tems of filaments. A final set of approaches starts with a simplified microscopic model
and coarse-grains the system via a priori closure approximations to attain a macro-
scopic description [41, 25]. We take such an approach while additionally considering
fluctuations in motor and filament densities, the background flow, and the interactions
of the immersed structure and the fluid. This allows us to directly incorporate knowl-
edge of the microscale mechanisms while maintaining the efficiency of coarse-grained
approaches over particle-based approaches in simulating hydrodynamic interactions.

As a first step towards a multiscale model of gliding assays, we develop a three-
dimensional model, including hydrodynamics effects via the coupling of the filaments
and the fluid, but assume a dilute suspension of filaments thus neglecting steric ef-
fects. In contrast to previous modeling approaches, we do not assume that the fila-
ments move in a two-dimensional plane, but instead we show that this results from an
asymptotic analysis and Hele-Shaw reduction of the fluid-coupled continuum model.
Furthermore, our modeling approach couples the microscale modeling of the attach-
ment and detachment of molecular motors to the mesoscale motion of the filaments,
and finally to the macroscale fluid motion. This explicit coupling is obtained by com-
bining continuum theories of polymeric liquids [3] with the force spreading approach
of the immersed boundary method [32]. There are three components of our continuum
model: a filament conservation equation, conservation equations for bound and free
motors, and fluid equations. These coupled equations evolve on three length scales:
L, the length of the side of the cover slip, l, the length of the filament, and Lm, the
length of the motor stalk. We assume that Lm � H = εL � L, where H is the
distance between the cover slip and the plate.

The remainder of the paper is organized as follows. In Section 2, we derive the full
three-dimensional continuum model focusing on the fluid coupling. Next, in Section 3,
we nondimensionalize the model and neglect small terms. In Section 4, we obtain re-
duced two-dimensional gap-averaged equations through an asymptotic analysis and
depth averaging, and we show that in this reduced formulation the filaments move
in a two-dimensional plane parallel to the bottom plate. Section 5 is devoted to the
numerical implementation, which is spectral for the fluid equations and second-order
in time and space for the evolution equations. Difficulties resulting from the high
dimensionality are resolved by exploiting data sparsity and using GPU parallelism.
Finally, Section 6 illustrates the reduced model and numerical implementation for
a set of parameters chosen to be experimentally relevant. In this case, our simula-
tion shows the emergence of ordered subregions of filaments and motors as observed
experimentally. We end with a short conclusion in Section 7.

2. Model. In a gliding assay, motor protein tails are anchored to a horizontal
plate while their heads are free to bind and pull filaments suspended in a liquid.
Figure 2.1 illustrates the experimental setup. Since there are no free motor complexes
in suspension and a motor can only attach to a single filament, there is no cross-
linking of filaments via motor complexes. In Table 2.1, we summarize the physical
parameters relevant for the gliding assay geometry, based on values reported in the
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Fig. 2.1. Microtubule gliding assay setup. Motor protein (black) tails are anchored to a fixed
plate, while their heads bind and pull microtubule filaments (green) suspended in a liquid.

literature.

Parameter Symbol Value or Range Source

Motor attachment rate kon

.005− .05s−1 (sp)

.04− 50s−1 (sp)
50s−1

[37]
[28]
[40]

Motor detachment rate koff

.083− .167s−1

.005− .05s−1 (sp)

.04− 50s−1 (sp)

.5s−1

[15]
[37]
[28]
[40]

Motor maximum speed Vmax
500− 750nm/s
1µm/s (sp)

[15]
[28, 17, 37]

Motor stall force Fstall

0.5− 2pN

5pN

[28]

[17]

Motor length (fully stretched) Lm 50nm [17]

Motor capture radius rc 10− 22nm [17]

Chamber length L
5− 18mm

3-15mm

[15]

[27]

Chamber height H
110µm

100µm

[15]

[27]

Filament length l
.7− 7µm
50µm
1µm

[15]
[16]
[17]

Fluid viscosity µ 0.5pNs/µm2 [17]

Fluid velocity U 10µm/s [39]
Table 2.1

List of relevant physical parameters and their values as reported in the literature. (sp) denotes
simulation parameters used in the referenced source.

2.1. Filament conservation equation. For a dilute suspension of filaments,
we denote by Ψ(x,p, t) the three-dimensional probability density function of the fila-
ment center-of-mass position x and orientation p with |p| = 1. Here, we parametrize
a rigid, fixed length filament by x + sp, where s ∈ [−l, l] is the arc length parame-
ter and we neglect bending, growth or shrinkage of filaments. The total number of
filaments N =

∫∫
Ψ(x,p, t)dxdp is conserved and the Smoluchowski equation or the

conservation of mass in probability for Ψ is [2, 1, 6]

∂tΨ +∇x · (ẋΨ) +∇p · (ṗΨ) = 0. (2.1a)
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To close Eq. (2.1a), we use equations for the x,p dynamics derived from slender-body
theory as in [34, 35] for active swimmers

ẋ2 = u2(x)−Dt,||∇x2
ln Ψ (2.1b)

ż = w(x)−Dt,⊥∂z ln Ψ (2.1c)

ṗ = (I− pp)∇xu(x)p−Dr∇p ln Ψ. (2.1d)

Here ∇p = (I− pp)∂p is the gradient on the unit sphere, u = (u2, w) is the fluid ve-
locity, and the subscript 2 denotes the in-plane coordinates x, y. To obtain Eq. (2.1b)-
(2.1d), we assumed that the background flow u is linear along the slender and rigid
filaments. Thus u can be written as u(x + sp) = u(x) + s∇u(x)p. While in the
theory of active swimmers, a swimming velocity appears in Eq. (2.1b), in our model
the motor force acts directly on the fluid and indirectly on the filaments as they move
passively with the fluid. This is similar to the approach taken in the immersed bound-
ary method, which was originially developed for flexible passive fibers and membranes
immersed in fluids [32]. In our case, the filaments are rigid, resulting in an additional
stress on the fluid due to the filaments’ resistance to deformation. We discuss this
term in Section 2.2. In the present model, we do not include thermal fluctuations,
instead we consider generalized diffusive terms intended to phenomenologically model
small-scale effects due to the surrounding fluid [35]. Dt,||, Dt,⊥ and Dr are the in-
plane translational, out-of-plane translational, and rotational diffusion coefficients,
respectively. Physically, if Dt,|| = Dt,⊥ = Dr = 0, Eq. (2.1b) says that the center-
of-mass passively follows the background velocity u(x) and Eq. (2.1d) says that the
rate of change in orientation is given by ∇u(x)p. The projection operator (I−pp) in
Eq. (2.1d) ensures that the length of the filament is constant, i.e. |p| = 1 or p · ṗ = 0.

2.2. Fluid equations. Using the characteristic numbers given in Table 2.1 for
the fluid velocity and characteristic length yields a small Reynolds number and hence
the convective acceleration is negligible. Furthermore, the frequency parameter given
by the time scale of the molecular force is small compared to the Reynolds number and
inertia is negligible. Thus, the fluid equations are the incompressible Stokes equations
with extra stress and an external force:

−µ∆xu(x, t) +∇xq(x, t) = ∇x · σp(x) + fm(x, t), ∇x · u = 0. (2.2)

Here, fm is the force density due to the motors acting at x on the immersed filaments,
q is the pressure, and σp is the extra stress arising from the microstructure [2]. For
passive filaments, σp can be decomposed into two contributions: σp = σp

B + σp
F

[9]. σp
B arises from Brownian rotations and is modeled as σp

B = 3kTD, where D =∫
Ψ (pp− I/3) dp. This term is small relative to the motor-based force [4] and we

neglect it. σp
F represents the resistance of the filaments to deformation and is modeled

as σp
F = σfS : E, where S =

∫
Ψ (pppp− Ipp/3) dp, E =

(
∇xu +∇xuT

)
/2 is the

rate-of-strain tensor, and σf = l3/(3c) is a coefficient depending on the aspect ratio
r of the filament (c = log(2/r)/(4πµ) > 0). The boundary conditions are doubly
periodic in x, y and no-slip at z = ±H/2.

2.3. Bound and free motor equations. A motor that walks in a direction
p under a load F will step with a speed V given by the single motor load-velocity
relationship [13]. Here, the load on the motor is the force exerted on the motor head
due to the motor’s intrinsic motion. Since we do not model that length scale directly,
we make the simplifying assumption that the motor is subject to a load of one half
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of its stall force and walks at one half of its maximum velocity giving the simplified
equation F = −Fstp/2. The motor force, F, gives the force magnitude and direction
generated by a motor with tail at r0 and head on the filament at r1 = y + sp. The
motor-based force density at a spatial point x is then

fm(x, t) = −Fst

2

∫∫∫∫
pδ(y + sp− x)Ψ(y,p, t)Mb(s, r0|y,p)ds dr0 dy dp. (2.3)

The convolution with the δ−Dirac function converts from the center-of-mass-based
description of Ψ to the spatial description of the force density. Here,Mb(s, r0|x,p; t)
is the conditional probability density of bound motors with tail r0 on the plate and
head at s on the given filament x,p. The total number of bound motors is given by
Nb =

∫∫∫∫
MbΨds dr0 dx dp. We also introduce Mf(r0, t), the density function of

motors with tail at r0 and free head. The total number of free motors isNf =
∫
Mfdr0.

In the entire system, the total number of motors Nm = Nf +Nb is conserved.

In general, the free and bound motor populations evolve according to a reaction-
diffusion-advection equation. In a gliding assay, motor tails are fixed to a plate and
cannot diffuse or advect with the flow. Hence, we consider only the conversion between
the free and bound populations, and the advection and procession of the bound motor
heads. Further, we assume that if a motor is close enough to the filament, it can bind
to the filament with an attachment rate per filament kon and that a head can detach
with a detachment rate koff. We derive the evolution equation forMb by considering
the conservation law for MbΨ, which evolves as

∂t(MbΨ) +
Vmax

2
∂s(MbΨ) +∇x · (ẋMbΨ) +∇p · (ṗMbΨ)

=
kon

2l
∫∫
Brc

Ψdpdx
MfΨ1Brc

− koffMbΨ.
(2.4)

Here 1Brc
is the characteristic function on the ball Brc of (capture) radius rc centered

at the attachment point r1. The three advection terms on the left hand side express
the procession of the motor along the filament with speed V = Vmax/2 and the motion
of the motor-filament complex with the background flow. The source term on the right
hand side express the attachment of a free motor at s to the filament x,p, where the
factor 2l

∫∫
Brc

Ψdpdx measures the approximate available length of filaments in Brc .

Since we are not tracking the position of the head r1, then, for a given filament x,p,
a head attaches at s with uniform probability in Brc . The sink term represents the
detachment of a bound motor. Using Eq. (2.1a) to eliminate Ψ, Eq. (2.4) becomes

∂tMb +
Vmax

2
∂sMb + ẋ · ∇xMb + ṗ · ∇pMb

=
kon

2l
∫∫
Brc

Ψdpdx
Mf1Brc

− koffMb.
(2.5a)

We impose an additional condition on detachment. In particular, a head detaches if
the motor reaches the end of the filament (i.e. |s| > l). We also note that a motor
should detach if the motor force exceeds a threshold. Since we assume a constant
motor force, we do not encounter this case.
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Finally, since the total number of motors Nm is conserved, we define the free
motor density Mf implicitly as

Mf =M−
∫∫∫

Mb ds dx dp, (2.5b)

where M is the total density of motors with tails at r0.

3. Nondimensionalized Equations. In order to simplify the model described
in Section 2, we start by nondimensionalizing the equations and determining charac-
teristic scales.

3.1. Fluid equations. We first nondimensionalize the incompressible Stokes
equations (2.2). Let the characteristic length be L in the x and y directions and
H = εL in the z direction (ε � 1), the characteristic velocity be U in the x and y
directions andW in the z direction, and the characteristic fluid time scale be T = L/U .
Since the flow time scale in the z-direction is the same as in the x, y plane, we must
have W = εU . We denote with primes nondimensional quantities. Substituting the
corresponding equations, we note that the nondimensional gradient of u is

∇xu =
U

L

(
∇x′2u

′
2

1
ε∂z′u

′
2

ε∇x′2w
′T ∂z′w

′

)
:=

1

T
∇x′u′. (3.1)

From equation (3.1), it follows that the extra stress due to the resistance to deforma-
tion σp

F has the form σfn/T ≈ 10−4 for the dilute microtubule suspensions considered
here, so we neglect it. The pressure and force density are nondimesionalized with
characteristic pressure Q and force density F . Denoting the components of the force
density fm = (fm,2, h) = F (f ′m,2, h

′) and neglecting the extra stress contributions, the
Stokes equations (2.2) become

∇x′2u
′
2 + ∂z′w

′ = 0 (3.2a)

−∆x′2
u′2 −

1

ε2
∂z′z′u

′
2 +

LQ

µU
∇x′2q

′ =
FL2

µU
f ′m,2 (3.2b)

−∆x′2
w′ − 1

ε2
∂z′z′w

′ +
LQ

ε2µU
∂z′q

′ =
FL2

εµU
h′. (3.2c)

3.2. Filament equations. We nondimensionalize the filament equation (2.1)
with the same scales as the fluid equations and we nondimensionalize Ψ by the total
concentration of filaments n = N/(εL3), setting nΨ′(x′,p, t′) = Ψ(Lx′2, εLz,p, T t

′).
We find

∂t′Ψ
′ +∇x′ · (̊x′Ψ′) +∇p · (p̊Ψ′) = 0, (3.3a)

x̊′2 = u′2 −
Dt,||T

L2
∇x′2 ln Ψ′, z̊′ = w′ − Dt,⊥T

ε2L2
∂z′ ln Ψ′ (3.3b)

p̊ = (I− pp)∇x′u′p−DrT∇p ln Ψ′, (3.3c)

where ·̊ indicates the time derivative with respect to t′ and ∇x′u′ refers to the tensor
given explicitly in Eq. (3.1).

3.3. Bound and free motor equations. Since the motors evolve on a smaller
scale than the fluid, we introduce new characteristic scales. We take the filament
half-length l as the length scale for motor evolution. We also define a new time
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scale, τ = l/Vmax. We denote with stars the new nondimensional quantities and
keep the prime notation for quantities that depend on both scales. We choose to
nondimensionalize the density of bound and free motors to the fraction of bound,
Nb/Nm, and free Nf/Nm motors respectively. In other words, we set

Mb(s, r0|x,p; t) =
Nm

NL2l
M′b(ls∗, Lr′0|Lx′2, εLz

′,p; τt∗),

Mf(r0, t) =
Nm

L2
M′f(Lr0, τ t

∗).

Substituting the appropriate definitions into Eqs. (2.5), the nondimensional evolution
equation for M′b and M′f are

∂t∗M′b +
1

2
∂s′(M′b) +

τ

T
x̊′ · ∇x′M′b +

τ

T
p̊ · ∇pM′b

=
k′on∫∫

Br′c
Ψ′dx′dp

M′f1Br′c
− k′offM′b

(3.4a)

M′f =M′ −
∫∫∫

M′bΨ′ds′ dx′ dp, (3.4b)

with k′on = konτ/2, k′off = koffτ , Br′c is the nondimensional capture ball and M =
Nm/(L

2)M′. Finally, nondimensionalizing the force density (2.3) and integrating
over yz, we have

fm(x, t) = F f ′m(Lx′2, εLxz, T t
′)

= −FstNm

2εL3

∫∫∫∫
pδ

(
y′2 +

l sinφ

L
s∗p2 − x′2

)
Ψ′
(

y′2, x
′
z +

l

εL
cosφ,p, t′

)
Mb

(
s∗, r′0|y′2, x′z +

l

εL
cosφ,p; t∗

)
ds∗dr′0dy

′
2dp,

(3.5)

where (φ, θ) are the polar and azimuthal angles, respectively and p2 = (cos θ, sin θ).
The above equation yields the characteristic force F = F0/ε with F0 = FstNm/L

3.

4. Two-dimensional Reduction. In this section, we reduce the spatial di-
mension of our system of equations by performing an asymptotic analysis of the fluid
equations in ε � 1. For clarity of exposition, in the remainder of the paper we drop
the primes, replace the open circles with dots and s∗ by s.

4.1. Fluid equations. We reduce the fluid equations following the standard
Hele-Shaw approach [19]. For the solution to the leading order equation in Eq. (3.2b)
to be nontrivial, the pressure term and/or the forcing term have to balance the last
viscous term. If the forcing term is not one of the dominating terms, then the fluid
equations reduce to those of a Newtonian Hele-Shaw cell and are not driven by the
motor forces, in contrast to the gliding assay. Therefore, using the characteristic force
derived at the end of Section 3, we have

FL2

µU
=
F0L

2

εµU
= O

(
1

ε2

)
.

From the above relationship to be asymptotically valid, we have U = O(ε) and we set
U = εU0. From the definition of the characteristic time, we have T = L/U = T0/ε
with T0 = L/U0.
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We now discuss the order of the pressure term. If the pressure term is of lower
order than the force term, then there are two cases to consider: Q = O(1) and
Q = O(εm) with m ≥ 1. In the latter case, the only leading order term in the
z-momentum equation (3.2c) is the force term which is therefore unbalanced and
this case is impossible. In the first case, the pressure term balances the force term
in the z-momentum equation (3.2c). But, since the pressure term drops out of the
x, y-momentum equations (3.2b), the continuity equation (3.2a) cannot be satisfied
without imposing a condition on the forcing term and this case is also impossible.
Therefore, we have

LQ

µU
=

LQ

εµU0
= O

(
1

ε2

)
as well. Consequently, Q scales like 1/ε and we set Q = Q0/ε. As a result from the
previous the discussion, the leading order terms in Eqs. (3.2) are O(1) in Eq. (3.2a),
O(1/ε2) in Eq. (3.2b), and O(1/ε4) in Eq. (3.2c).

Next, we perform the asymptotic analysis and consider the leading order terms
in the momentum equations (3.2b). Setting A0 = LQ0/(µU0) and B0 = F0L

2/(µU0),
we have for the leading O(1/ε2) terms

−∂zzu2 +A0∇2q = B0fm,2. (4.1)

In the z-momentum equation (3.2c), the pressure term is the only leading O(1/ε4)
term and Eq. (3.2c) reduces to ∂zq = 0, which implies that q is independent of z, in
other words q(x2, z) = q(x2). Integrating Eq. (4.1) twice with respect to z we find

−u2(x2, z) + α0z + α1 = −A0

2
z2∇2q(x2) +B0I(z),

where I(z) =
∫ z
−1/2

∫ z′
−1/2

fm,2(x2, z
′′)dz′′dz′. Using the no-slip boundary conditions

at z = ±1/2, we obtain the constants of integration

α0 = B0I(1/2), and α1 = −A0

8
∇2q(x2) +

B0

2
I(1/2).

Because ε � 1, we now define a gap-averaged velocity ū2(x2) =
∫

u2(x2, z)dz.
Averaging the continuity equation (3.2a) over the gap and using the no-slip boundary
conditions yields

∇2 · ū2 = 0. (4.2a)

Further, substituting the values of the integration constants and integrating we obtain
the gap-averaged two-dimensional velocity field ū2(x2) driven by the x, y-component
of the force density fm,2

ū2(x2) = −A0

12
∇2q(x2) +

B0

2
I
(

1

2

)
−B0

∫
I(z)dz. (4.2b)

Equations (4.2) are the gap-averaged two-dimensional forced Stokes equations. These
equations are very similar to those obtained for non-Newtonian Hele-Shaw flows [19].
We also remark that the integral operator and its mean can be expressed as moments
of the force density by reversing the order of integration

I(1/2) =

∫ (
1

2
− z
)

fm,2(x2, z)dz, and

∫
I(z)dz =

1

2

∫ (
1

2
− z
)2

fm,2(x2, z)dz.
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4.2. Filament equations. To reduce the evolution equations for the distribu-
tion functions Ψ we again rely on leading order analysis and depth-averaging. Since
the diffusion terms represent phenomenologically observed small-scale motions, the
diffusion constants are chosen so that these terms are of comparable magnitude with
the other terms in Eq. (3.3b)-(3.3c). Integrating Eq. (3.3a) over the gap yields

∂t

(∫
Ψdz

)
+∇x,2 ·

(∫
ẋ2Ψdz

)
+ (żΨ)

∣∣∣∣1/2
−1/2

+∇p ·
(∫

ṗΨdz

)
= 0. (4.3)

In order to express the previous equation in terms of the gap-averaged distribution of

filaments Ψ̄, we will make use of the general closure approximation

∫
f(z)Ψdz = f̄Ψ̄,

for any function f(z). For a velocity field u that is approximately parabolic in z, the
accuracy of this approximation will depend on the maximum value of ψzz in the gap.
This approximation may degrade if all the filaments are bound, as all the filaments
will then be within a ∼50nm band relative to the ∼100µm gap. However, this is
not the case in general. With this closure approximation and the no-slip boundary
conditions, Eq. (4.3) becomes

∂tΨ̄ +∇x,2 ·
(

˙̄x2Ψ̄
)

+∇p ·
(∫

ṗΨdz

)
= 0 with ˙̄x2 = ū2 −

D0
t,||T0

L2
∇x,2 ln Ψ̄,

(4.4)

where Dt,|| = D0
t,||ε. Next, we reduce the rotational flux to two dimensions. To do

so, we denote the unit vectors in spherical coordinates by φ̂ and θ̂. Then, expressing
ṗ in spherical coordinates as ṗ = φ̇φ̂ + sinφθ̇θ̂, taking the dot product of Eq. (3.3c)

with θ̂ and φ̂, and defining Dr = D0
r ε, we arrive at

θ̇ sinφ = θ̂
T
∇xup− D0

rT0

sinφ
∂θ ln Ψ and φ̇ = φ̂

T
∇xup−D0

rT0∂φ ln Ψ. (4.5)

Recalling the form of ∇xu in Eq. (3.1), we let p = (sinφp2, cosφ), θ̂ = (p⊥2 , 0), and

φ̂ = (cosφp2,− sinφ) with p⊥2 = (− sin θ, cos θ). The leading order term in Eq. (4.5)
is of order 1/ε and carrying out the matrix multiplications, we obtain

cosφ
(
p⊥T2 ∂zu2

)
= 0, and cos2 φ

(
pT2 ∂zu2

)
= 0.

The only non-trivial solution to the previous equations is cosφ = 0, that is φ = π
2 .

In other words, to leading order the filaments lie in a horizontal plane, which has
been observed experimentally [38]. In this case, ∇p · (

∫
ṗΨ) = ∂θ(

∫
θ̇Ψ) and θ̇ =

p⊥T2 ∇x,2u2p2−D0
rT0∂θ ln Ψ, which allows us to reduce the last term in Eq. (4.4) to a

single θ derivative. Combining everything and applying the closure approximation on
the velocity gradient tensor, we arrive at the two-dimensional gap-averaged filament
evolution equation

∂tΨ̄ +∇x,2 · ( ˙̄x2Ψ̄) + ∂θ(
˙̄θΨ̄) = 0 (4.6a)

˙̄x2 = ū2 −
D0

t,||T0

L2
∇2 ln Ψ̄, ˙̄θ = p⊥T2 ∇x,2ū2p2 −D0

rT0∂θ ln Ψ̄. (4.6b)
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4.3. Bound and free motor equations. Since T = T0/ε, the last two advec-
tive terms on the left of Eq. (3.4a) scale like ε and they can be neglected. Further,
because no other term in Eq. (3.4a) depends on ε, the O(1) leading order equation
for Mb is

∂t∗Mb +
1

2
∂sMb =

kon∫∫
Brc

Ψdxdθ
Mf1Brc

− koffMb, (4.7)

Integrating over z and using the closure approximation, we obtain the gap-averaged
equation for the density of bound and free motors

∂t∗M̄b +
1

2
∂s(M̄b) =

kon∫∫
B

Ψ̄dx2dθ
Mf1B − koffM̄b, (4.8a)

Mf =M−
∫∫∫

M̄bΨ̄ds dx2 dθ. (4.8b)

Here B is the two-dimensional projection of Brc .
Next, we reduce the motor force density (3.5). Integrating over z, using the

closure approximation, and φ = π/2, we obtain the gap-averaged force density

f̄m(x2, t) = −1

2

∫∫∫∫
p2δ

(
y2 +

l

L
sp2 − x2

)
Ψ̄(y2, θ, t)M̄b(s, r0|y2, θ)ds dr0 dy2 dθ.

(4.9)
The closure approximation and Eq. (4.9) allow us to solve for the constants of

integration in Eq. (4.2b): I(1/2) = f̄m,2/2 and
∫
I(z)dz = f̄m,2/6. Plugging these

expressions into Eq. (4.2b) yields the final fluid gap-averaged fluid equations

∇x,2 · ū2(x2) = 0 (4.10a)

ū2(x2) = −A0

12
∇2q(x2) +

B0

12
f̄m(x2, t). (4.10b)

This concludes the model reduction to a system of equations depending on the
two-dimensional configuration variables r0,x2 and one-dimensional configuration vari-
ables s, θ. Table 4.1 summarizes the two-dimensional model equations. For simplic-
ity, we drop the subscript 2 and bars in the notation and let Dt,|| = D0

t,||T
0/L2 and

Dr = D0
rT .

5. Numerical method. In this section, we discuss the discretization of the
nondimensionalized equations summarized in Table 4.1 and the development of a
stable algorithm. First, we note that Mb is high dimensional, with six variables in
2D. However, since a head detaches if the elongation of the motor’s stalk exceeds
a certain threshold, Mb is sparse in the x − r0 hyperplane, hence we store a small
x2-grid, whose size depends on (l/L), around each r0.

At t = 0, we initialize the filament distribution Ψ, the motor distributionM, and
the bound motor distributionMb. The free motor distribution can then be computed
with (M2) and the fluid equations (U1)-(U2) solved (see below). The algorithm steps
and substeps to advance from time tn to time tn+1 are described next. Since τ < T ,
we denote by k the time index on which Mb is solved.

1. Compute Ψn+1 by solving (F1) together with (F2). We use second-order
Crank-Nicolson for the diffusion terms, and Adams Bashforth 2 with an adap-
tive timestep for the time discretization of the advection terms. The advection
terms are discretized in space using a high-resolution total variation dimin-
ishing upwind scheme with superbee flux limiter [7].
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Model equations

Filaments
∂tΨ +∇x · (ẋΨ) + ∂θ(θ̇Ψ) = 0

ẋ = u−Dt,||∇x ln Ψ, θ̇ = pT⊥∇xup−Dr∂θ ln Ψ

(F1)

(F2)

Motors
∂t∗Mb + 1

2
∂sMb = kon∫∫

B Ψdx2dθ
Mf1B − koffMb

Mf =M−
∫∫∫
MbΨds dy dθ

(M1)

(M2)

Fluid
u = −A0

12
∇2q + B0

12
fm, ∇ · u = 0

fm = − 1
2

∫∫∫
p δ(y + l

L
sp− x)ΨMbds dr0 dy dθ

(U1)

(U2)

Table 4.1
Summary of the two-dimensional, gap-averaged, nondimensional model equations for the evo-

lution of the filament distribution Ψ(x, θ, t), bound motor distribution Mb(r0, s|x, θ; t), free motor
distribution Mf(r0) and fluid u(x) in a motility assay.

2. ComputeMk+1
b by evaluating (M2) and solving (M1). The integrals in (M2)

are evaluated using the midpoint rule using data at time n. We again use
upwinding with superbee flux limiter for the advection terms, and Adams
Bashforth 2 with an adaptive timestep for the time discretization. We repeat
this process until Mn+1

b is obtained.
3. Compute the force density fn+1

m from (U2) usingMn+1
b and Ψn+1. The inte-

grals are evaluated using the midpoint rule and an approximate Dirac delta
function, for which we use a hat function spanning two grid cells in each
direction. This approximation is C0 and satisfies a first moment condition,
resulting in conservation of angular momentum. For a discussion of the im-
plications of different choices of numerical delta functions, see [32].

4. Solve (U1) spectrally for un+1. Because of the periodic boundary conditions,
we transform (U1) in Fourier space (k wave vector):

ûk = −A0

12
ikp̂+

B0

12
f̂mk

k · ûk = 0.

Taking the dot product with k, the pressure can be eliminated yielding{
ûk = B0

12

(
I− kkT

k2

)
f̂mk

if k = ‖k‖ 6= 0

û0 = B0

12 f̂m0 if k = 0
. (5.1)

We remark that the constants A0 and Q0 drop out and Eq. (5.1) depends on
B0 only. At this stage, we also compute the rate-of-strain tensor spectrally.

The two most time-intensive portions of the algorithm are the bound motor den-
sity evolution and the motor force calculation. For feasibility, we implemented these
using Nvidia’s CUDA C language and ran them on Nvidia Tesla GPU accelerators
obtaining speedup factors of nearly 50 for all parameters tested. Since there is no
interaction between motors in neighboring ro cells, we update each r0 cell indepen-
dently.

6. Results. We illustrate the behavior of the system with two examples, using
the parameters L = 125µm, l = 1µm, ε = 5 · 10−4, N = 2 · 104, Nm = 3 · 106,
kon = 1s−1, koff = 0.5s−1. Here we demonstrate that the proposed model captures
qualitative features of microtubule gliding assays.
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Fig. 6.1. Evolution of the velocity field and filament density for a clump of locally aligned
filaments with uniform bound motor density, depicted at t = 0s, t = 50s, and t = 150s. The
parameters are L = 125µm, l = 1µm, ε = 5 · 10−4, N = 2 · 104, Nm = 3 · 106, kon = 0.5s−1,
koff = 0.5s−1. The dimensionless diffusion parameters to Dt,|| = 2.5 · 10−3 and Dr = 2.5 · 10−5.

First, we consider a clump of locally aligned filaments in the center of the domain
with an initially uniform bound motor density. The initial alignment drives the fluid
motion, and consequently the filaments, in that direction. The clump advects and
diffuses through the domain as illustrated in Fig. 6.1 (see supplementary movie S1).
This motion is qualitatively similar to the moving clusters observed in [38]. The
resulting disturbance in the velocity field propagates out from the leading edge of the
clump in a wave-like motion. Eventually, diffusion causes the filament density to relax
to the uniform isotropic density and the velocity field to decay to zero. We set the
dimensionless diffusion parameters to Dt,|| = 2.5 · 10−3 and Dr = 2.5 · 10−5.

Second, we consider the experimentally motivated example of a gliding assay of
non-localized filaments and motors (Fig. 6.2 and supplementary movies S2-S6). If the
initial density of filaments is uniform, our model does not generate disturbance flows
different than the imposed mean flow. Therefore, the filament density is perturbed
away from uniformity in both space and orientation with

1

a

8∑
i,j=1

εij cos(πix+ ξij) cos(πjy + ξij)Pij(θ), (6.1)

where εij is a uniform random number in [−.01, .01], ξij is a uniform random number
in [0, 2π], a is a normalization constant and Pij(θ) are third order polynomials in
cos(θ) and sin(θ) with random coefficients in [−1, 1] as in [35].

The typical state of the system is illustrated in Fig. 6.2 at times t = 0, 10, 20 min.
The first row depicts the evolution of the velocity and vorticity fields (supplementary
movie S2), and in the second row, tracer particles highlight fluid mixing (supplemen-
tary movie S3). After the transient velocity field disappears, the flow organizes into
distinct subregions separated by boundaries of non-zero vorticity. These subregions
span tens of microns, compared with the filament length of 1 micron, and can persist
for several minutes. The third row shows the spatial filament density defined as

Ψspatial(x, t) =

∫
Ψ(x, θ, t)dθ (6.2)

(supplementary movie S4). As t increases, the filaments form varying patterns, con-
centrating into bands at flow subregion boundaries and clumps in flow subregion
interiors. These filament concentration patterns largely mantain their structure as
they traverse the domain following the flow field. Some regions collide resulting in
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the formation of larger fronts or bands, while others break apart. The concentrated
regions contain more than twice the number of filaments as the sparse regions. Such
migrating cohesive structures have been observed in experiment [38, 39]. The fourth
row depicts the filament orientation field (supplementary movie S5). We compute the
orientation matrix

N(x, t) =

∫
ppTΨ(x, θ, t)dθ∫

Ψ(x, θ, t)dθ
(6.3)

and draw its eigenvectors scaled by their associated eigenvalues. We remark that Ψ
maintains antipodal symmetry, i.e Ψ(x, θ, t) = Ψ(x, θ + π, t), because Eqs. (4.6a)-
(4.6b) are invariant under this transformation. The two-dimensional nematic order
parameter is

S(x, t) =

∫ (
2(p · n)2 − 1

)
Ψ(x, θ, t)dθ∫

Ψ(x, θ, t)dθ
, (6.4)

where n is the eigenvector associated with the largest eigenvalue of N. We observe
increased local nematic order at the boundaries of the flow subregions, where filaments
tend to align tangentially to the boundaries, while the interiors of the flow subregions
contain areas of both high and low nematic order. Finally, the fifth row depicts the
bound motor concentration with tail at r0

Mtail
b (r0, t) =

∫∫∫
Mb(s, r0, t|x, θ)Ψ(x, θ, t)dsdxdθ (6.5)

(supplementary movie S6). Our simulation shows a strong positive correlation be-
tween high bound motor density and high filament concentration. We note that
motors are not directly advected by the flow, as their tails are fixed to the substrate.
Instead, the bound motor concentration increases as more filaments become available
to bind to.

7. Conclusions. Starting from conservation equations, we developed a multi-
scale model describing the complex interplay between molecular motors, filaments,
and fluid in a gliding assay. Our asymptotic and dimensional analysis agrees with ex-
perimental results [38] and shows that, for a small channel height, the filaments evolve
in a two-dimensional plane parallel to the bottom plate upon which molecular motors
are anchored. The coupling between the motors, filaments, and surrounding fluid is
achieved by directly spreading the motor force onto the fluid and passively advect-
ing the filaments with the local fluid velocity. As a result, the depth-averaged fluid
equations ressemble the non-Newtonian Hele Shaw equations. In the present model,
we only consider a dilute suspension of filaments and therefore neglect effects due to
steric interactions between filaments. The only interactions considered are therefore
purely hydrodynamic interactions between the fluid and the filaments. Nevertheless,
our simulations show behavior that is qualitatively similar to that seen in [38]. We
observe swirls, moving high-density fronts, and cluster movements.

An in-depth study of the parameter set should reveal the transition between dif-
ferent states as described in [21, 17, 36]. While our model and numerical experiments
demonstrate the importance of hydrodynamic interactions, they do not address the
relative importance of steric and hydrodynamic interactions for pattern formation in
gliding assays. To be able to ascertain the role of both effects as well as observe addi-
tional patterns, the density of filaments must be increased. As a result, the continuum
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model should be extended to include both steric interactions between the filaments
and σp

F , the extra stress due to the filament resistance to deformation [9, 6].
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[40] Thomas Surrey, François J. Nédélec, Stanislas Leibler, and Eric Karsenti, Physical
properties determining self-organization of motors and microtubules, Science, 292 (2001),
pp. 1167–1171.

[41] Sumanth Swaminathan, Falko Ziebert, Dmitry Karpeev, and Igor S. Aranson, Motor-
mediated alignment of microtubules in semidilute mixtures, Physical Review E, 79 (2009),
p. 036207.



16 C. Hohenegger, S. Cook, and T. Shinar

t = 0min t = 10min t = 20min

F
lu

id
V

el
o
ci

ty
T

ra
ce

r
P

ar
ti

cl
es

F
il

am
en

t
D

en
si

ty
F

il
am

en
t

O
ri

en
ta

ti
on

B
ou

n
d

M
ot

or
s

Fig. 6.2. Emergence of ordered subregions in the filament-motor-fluid system, depicted at
t = 0 (first column), t = 10 min (second column), and t = 20 min (third column). First row:
u(x, t), with vorticity plotted in color (units of s−1). As the simulation proceeds, the fluid subregions
form vorticity bands at their boundaries with zero vorticity in their interiors. Second row: tracer
particles show fluid mixing. Third row: Ψspatial(x, t) in µm−2 defined in Eq. (6.2). Fourth row:
eigenvectors of N(x, t) (red lines) and S(x, t) (green field) given in Eqs. (6.3)-(6.4). Fifth row:
Mtail

b (r0, t) in µm−2 defined in Eq. (6.5). At t = 0, the density of filaments is perturbed in space
and orientation according to Eq. (6.1), while the bound motor density is uniform. The parameters
are L = 125µm, l = 1µm, µ = 0.12pNs/µm2, ε = 5 · 10−4, N = 2 · 104, Nm = 3 · 106, kon = 1s−1,
koff = 0.5s−1,Dt,|| = 0µm2s−1, Dr = 0s−1.


